A Wavelet Transform and self-supervised learning-based framework for bearing fault diagnosis with limited labeled data

计算机科学 人工智能 模式识别(心理学) 自编码 分类器(UML) 编码器 小波 特征提取 断层(地质) 监督学习 小波变换 半监督学习 k-最近邻算法 数据挖掘 机器学习 深度学习 人工神经网络 地震学 地质学 操作系统
作者
Yuhong Jin,Lei Hou,Ming Du,Yushu Chen
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2207.10432
摘要

Traditional supervised bearing fault diagnosis methods rely on massive labelled data, yet annotations may be very time-consuming or infeasible. The fault diagnosis approach that utilizes limited labelled data is becoming increasingly popular. In this paper, a Wavelet Transform (WT) and self-supervised learning-based bearing fault diagnosis framework is proposed to address the lack of supervised samples issue. Adopting the WT and cubic spline interpolation technique, original measured vibration signals are converted to the time-frequency maps (TFMs) with a fixed scale as inputs. The Vision Transformer (ViT) is employed as the encoder for feature extraction, and the self-distillation with no labels (DINO) algorithm is introduced in the proposed framework for self-supervised learning with limited labelled data and sufficient unlabeled data. Two rolling bearing fault datasets are used for validations. In the case of both datasets only containing 1% labelled samples, utilizing the feature vectors extracted by the trained encoder without fine-tuning, over 90\% average diagnosis accuracy can be obtained based on the simple K-Nearest Neighbor (KNN) classifier. Furthermore, the superiority of the proposed method is demonstrated in comparison with other self-supervised fault diagnosis methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助酷酷采纳,获得10
1秒前
1秒前
2秒前
脑洞疼应助朱由校采纳,获得10
2秒前
静心安逸发布了新的文献求助10
3秒前
WonderHua应助雨霧雲采纳,获得10
3秒前
Cheferr完成签到,获得积分10
3秒前
4秒前
merrylake发布了新的文献求助10
4秒前
sparks发布了新的文献求助10
5秒前
在水一方应助学术渣渣采纳,获得10
6秒前
Cheferr发布了新的文献求助10
8秒前
8秒前
小张完成签到,获得积分10
9秒前
在水一方应助dong采纳,获得10
10秒前
美少女发布了新的文献求助10
13秒前
14秒前
Singularity应助缓慢小松鼠采纳,获得10
15秒前
jm应助yy采纳,获得10
15秒前
16秒前
搞怪的映菡完成签到,获得积分10
16秒前
17秒前
郭菱香完成签到,获得积分20
17秒前
纪外绣给纪外绣的求助进行了留言
17秒前
18秒前
huo应助JofferyChan采纳,获得10
18秒前
19秒前
lseyj发布了新的文献求助10
19秒前
Dr大壮发布了新的文献求助10
21秒前
小二郎应助刻苦素采纳,获得10
21秒前
一一应助聪慧的致远采纳,获得20
22秒前
22秒前
22秒前
23秒前
23秒前
烟花应助odanfeonq采纳,获得10
24秒前
24秒前
24秒前
25秒前
25秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3334447
求助须知:如何正确求助?哪些是违规求助? 2963653
关于积分的说明 8610845
捐赠科研通 2642632
什么是DOI,文献DOI怎么找? 1446831
科研通“疑难数据库(出版商)”最低求助积分说明 670421
邀请新用户注册赠送积分活动 658611