光伏系统
按来源划分的电力成本
环境科学
可再生能源
投资回收期
电
汽车工程
发电
计算机科学
工程类
生产(经济)
电气工程
功率(物理)
经济
物理
量子力学
宏观经济学
标识
DOI:10.1016/j.ijhydene.2022.05.193
摘要
Many universities have plans to reduce campus energy consumption with developed energy efficiency strategies, supply the energy needs of the university campus with renewable energy and create a green campus. In order to serve this purpose, this study focuses on the simulation of the installation of an on-grid photovoltaic (PV) power system at the Vocational Colleges Campus, Hitit University. On the other hand, the integration of the simulated PV system with a gas fired-trigeneration system is discussed. Moreover, the study explores opportunities for solar hydrogen generation without energy storage on campus. For the PV system simulation, three different scenarios were created by using web-based PV system design software (HelioScope). Installed powers in the simulation were found as 94.2 kWe, 123.9 kWe, and 157.5 kWe for the low scenario (on the rooftop), high scenario (on the rooftop), and the high + PV canopy arrays scenario (on the rooftop and an outdoor parking area), respectively. The levelized cost of electricity (LCOE) values were 0.061 $/kWh, 0.065 $/kWh, and 0.063 $/kWh for the low scenario, high scenario, and the scenario including PV canopy, respectively. The energy payback time is found to be 6.47–6.94 years for the 20–25 years lifetime of the PV plant. The simulation results showed that the PV system could support it by generating additional electrical energy up to 25% of the existing system. The campus can reduce GHG emissions of 1546–2272 tonnes-CO2eq, which is equivalent to 142–209 ha of forest-absorbing carbon unused during the life of the PV system. Depending on the production and consumption methods utilized on campus, which is a location with relatively large solar potential, the levelized cost of hydrogen (LCOH) of hydrogen generation ranged from 0.054 $/kWhH2 (1.78 $/kgH2) to 0.103 $/kWhH2 (3.4 $/kgH2). Consequently, with proper planning and design, a grid-connected PV-trigeneration-hydrogen generation hybrid system on a university campus may operate successfully.
科研通智能强力驱动
Strongly Powered by AbleSci AI