亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

What affects the online ratings of restaurant consumers: a research perspective on text-mining big data analysis

悲伤 情绪分析 透视图(图形) 惊喜 愤怒 情感(语言学) 心理学 质量(理念) 潜在Dirichlet分配 相似性(几何) 款待 计算机科学 主题模型 认知心理学 社会心理学 情报检索 旅游 自然语言处理 人工智能 哲学 法学 图像(数学) 认识论 沟通 政治学
作者
Jun Liu,Yunyun Yu,Fuad Mehraliyev,Sike Hu,Jiaqi Chen
出处
期刊:International Journal of Contemporary Hospitality Management [Emerald (MCB UP)]
卷期号:34 (10): 3607-3633 被引量:43
标识
DOI:10.1108/ijchm-06-2021-0749
摘要

Purpose Despite a significant focus on customer evaluation and sentiment analysis, limited attention has been paid to discrete emotional perspective in terms of the emotionality used in text. This paper aims to extend the general-sentiment dictionary in Chinese to a restaurant-domain-specific dictionary, visualize spatiotemporal sentiment trends, identify the main discrete emotions that affect customers’ ratings in a restaurant setting and identify constituents of influential emotions. Design/methodology/approach A total of 683,610 online restaurant reviews downloaded from Dianping.com were analyzed by a sentiment dictionary optimized by the authors; the main emotions (joy, love, trust, anger, sadness and surprise) that affect online ratings were explored by using multiple linear regression methods. After tracking these sentiment review texts, Latent Dirichlet Allocation (LDA) and LDA models with term frequency-inverse document frequency as weights were used to find the factors that constitute influential emotions. Findings The results show that it is viable to optimize or expand sentiment dictionary by word similarity. The findings highlight that love and anger have the highest effect on online ratings. The main factors that constitute consumers’ anger (local characteristics, incorrect food portions and unobtrusive location) and love (comfortable dining atmosphere, obvious local characteristics and complete supporting services) are identified. Different from previous studies, negativity bias is not observed, which poses a question of whether it has to do with Chinese culture. Practical implications These findings can help managers monitor the true quality of restaurant service in an area on time. Based on the results, restaurant operators can better decide which aspects they should pay more attention to; platforms can operate better and can have more manageable webpage settings; and consumers can easily capture the quality of restaurants to make better purchase decisions. Originality/value This study builds upon the existing general sentiment dictionary in Chinese and, to the best of the authors’ knowledge, is the first to provide a restaurant-domain-specific sentiment dictionary and use it for analysis. It also reveals the constituents of two prominent emotions (love and anger) in the case of restaurant reviews.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助优秀醉易采纳,获得10
2秒前
9秒前
15秒前
17秒前
33秒前
35秒前
Jenny完成签到,获得积分10
43秒前
倾卿如玉完成签到 ,获得积分10
52秒前
自觉语琴完成签到 ,获得积分10
57秒前
57秒前
Orange应助科研通管家采纳,获得10
57秒前
萧水白应助ttimmy采纳,获得20
1分钟前
萝卜丁完成签到 ,获得积分0
1分钟前
1分钟前
酷波er应助张xingxing采纳,获得30
1分钟前
1分钟前
1分钟前
丙子哥发布了新的文献求助10
1分钟前
duan123456发布了新的文献求助10
1分钟前
明晨完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
saying发布了新的文献求助10
1分钟前
3kou完成签到 ,获得积分10
1分钟前
Hayat应助duan123456采纳,获得10
1分钟前
2分钟前
科研通AI2S应助lewis17采纳,获得10
2分钟前
小样发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
阳光完成签到 ,获得积分10
2分钟前
小样发布了新的文献求助10
2分钟前
乐乐乐乐乐乐应助saying采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
上官若男应助科研通管家采纳,获得10
2分钟前
尊敬的语薇完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
SciGPT应助小样采纳,获得10
3分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3341836
求助须知:如何正确求助?哪些是违规求助? 2969199
关于积分的说明 8637659
捐赠科研通 2648899
什么是DOI,文献DOI怎么找? 1450385
科研通“疑难数据库(出版商)”最低求助积分说明 671902
邀请新用户注册赠送积分活动 660986