Radiomics-based Machine-learning Models Can Detect Pancreatic Cancer on Prediagnostic Computed Tomography Scans at a Substantial Lead Time Before Clinical Diagnosis

医学 逻辑回归 胰腺癌 无线电技术 支持向量机 接收机工作特性 人工智能 置信区间 放射科 内科学 核医学 癌症 计算机科学
作者
Sovanlal Mukherjee,Anurima Patra,Hala Khasawneh,Panagiotis Korfiatis,Naveen Rajamohan,Garima Suman,Shounak Majumder,Ananya Panda,Matthew P. Johnson,Nicholas B. Larson,Darryl Wright,Timothy L. Kline,Joel G. Fletcher,Suresh T. Chari,Ajit H. Goenka
出处
期刊:Gastroenterology [Elsevier]
卷期号:163 (5): 1435-1446.e3 被引量:75
标识
DOI:10.1053/j.gastro.2022.06.066
摘要

Background & Aims

Our purpose was to detect pancreatic ductal adenocarcinoma (PDAC) at the prediagnostic stage (3–36 months before clinical diagnosis) using radiomics-based machine-learning (ML) models, and to compare performance against radiologists in a case-control study.

Methods

Volumetric pancreas segmentation was performed on prediagnostic computed tomography scans (CTs) (median interval between CT and PDAC diagnosis: 398 days) of 155 patients and an age-matched cohort of 265 subjects with normal pancreas. A total of 88 first-order and gray-level radiomic features were extracted and 34 features were selected through the least absolute shrinkage and selection operator–based feature selection method. The dataset was randomly divided into training (292 CTs: 110 prediagnostic and 182 controls) and test subsets (128 CTs: 45 prediagnostic and 83 controls). Four ML classifiers, k-nearest neighbor (KNN), support vector machine (SVM), random forest (RM), and extreme gradient boosting (XGBoost), were evaluated. Specificity of model with highest accuracy was further validated on an independent internal dataset (n = 176) and the public National Institutes of Health dataset (n = 80). Two radiologists (R4 and R5) independently evaluated the pancreas on a 5-point diagnostic scale.

Results

Median (range) time between prediagnostic CTs of the test subset and PDAC diagnosis was 386 (97–1092) days. SVM had the highest sensitivity (mean; 95% confidence interval) (95.5; 85.5–100.0), specificity (90.3; 84.3–91.5), F1-score (89.5; 82.3–91.7), area under the curve (AUC) (0.98; 0.94–0.98), and accuracy (92.2%; 86.7–93.7) for classification of CTs into prediagnostic versus normal. All 3 other ML models, KNN, RF, and XGBoost, had comparable AUCs (0.95, 0.95, and 0.96, respectively). The high specificity of SVM was generalizable to both the independent internal (92.6%) and the National Institutes of Health dataset (96.2%). In contrast, interreader radiologist agreement was only fair (Cohen's kappa 0.3) and their mean AUC (0.66; 0.46–0.86) was lower than each of the 4 ML models (AUCs: 0.95–0.98) (P < .001). Radiologists also recorded false positive indirect findings of PDAC in control subjects (n = 83) (7% R4, 18% R5).

Conclusions

Radiomics-based ML models can detect PDAC from normal pancreas when it is beyond human interrogation capability at a substantial lead time before clinical diagnosis. Prospective validation and integration of such models with complementary fluid-based biomarkers has the potential for PDAC detection at a stage when surgical cure is a possibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暗号完成签到 ,获得积分10
1秒前
老北京完成签到,获得积分10
9秒前
123完成签到 ,获得积分10
10秒前
WW应助xun采纳,获得10
12秒前
13秒前
wy97发布了新的文献求助10
29秒前
cadcae完成签到,获得积分10
32秒前
danli完成签到 ,获得积分10
39秒前
温馨完成签到 ,获得积分10
42秒前
勤恳的雪卉完成签到,获得积分10
42秒前
jue完成签到 ,获得积分10
47秒前
47秒前
欢呼的茗茗完成签到 ,获得积分10
50秒前
Hiram完成签到,获得积分10
50秒前
XZZ完成签到 ,获得积分10
54秒前
56秒前
wy97完成签到,获得积分10
58秒前
1分钟前
stiger完成签到,获得积分10
1分钟前
ma发布了新的文献求助10
1分钟前
等待戈多发布了新的文献求助10
1分钟前
研友_8y2G0L完成签到,获得积分10
1分钟前
又又完成签到,获得积分10
1分钟前
1分钟前
xiaoputaor完成签到 ,获得积分10
1分钟前
click完成签到 ,获得积分10
1分钟前
如意的馒头完成签到 ,获得积分10
1分钟前
汤姆完成签到 ,获得积分10
1分钟前
钟声完成签到,获得积分0
1分钟前
lingshan完成签到 ,获得积分10
1分钟前
ajiduo完成签到 ,获得积分10
1分钟前
liuyq0501完成签到,获得积分10
1分钟前
wjswift完成签到,获得积分10
1分钟前
binfo发布了新的文献求助10
1分钟前
Singularity举报yuansong715求助涉嫌违规
1分钟前
美满的皮卡丘完成签到 ,获得积分10
1分钟前
一路有你完成签到 ,获得积分10
1分钟前
nomanesfy完成签到 ,获得积分10
1分钟前
Lesterem完成签到 ,获得积分10
1分钟前
等待戈多发布了新的文献求助10
1分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793717
关于积分的说明 7807147
捐赠科研通 2450016
什么是DOI,文献DOI怎么找? 1303576
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350