亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Radiomics-based Machine-learning Models Can Detect Pancreatic Cancer on Prediagnostic Computed Tomography Scans at a Substantial Lead Time Before Clinical Diagnosis

医学 逻辑回归 胰腺癌 无线电技术 支持向量机 接收机工作特性 人工智能 置信区间 放射科 内科学 核医学 癌症 计算机科学
作者
Sovanlal Mukherjee,Anurima Patra,Hala Khasawneh,Panagiotis Korfiatis,Naveen Rajamohan,Garima Suman,Shounak Majumder,Ananya Panda,Matthew P. Johnson,Nicholas B. Larson,Darryl Wright,Timothy L. Kline,Joel G. Fletcher,Suresh T. Chari,Ajit H. Goenka
出处
期刊:Gastroenterology [Elsevier BV]
卷期号:163 (5): 1435-1446.e3 被引量:98
标识
DOI:10.1053/j.gastro.2022.06.066
摘要

Background & Aims

Our purpose was to detect pancreatic ductal adenocarcinoma (PDAC) at the prediagnostic stage (3–36 months before clinical diagnosis) using radiomics-based machine-learning (ML) models, and to compare performance against radiologists in a case-control study.

Methods

Volumetric pancreas segmentation was performed on prediagnostic computed tomography scans (CTs) (median interval between CT and PDAC diagnosis: 398 days) of 155 patients and an age-matched cohort of 265 subjects with normal pancreas. A total of 88 first-order and gray-level radiomic features were extracted and 34 features were selected through the least absolute shrinkage and selection operator–based feature selection method. The dataset was randomly divided into training (292 CTs: 110 prediagnostic and 182 controls) and test subsets (128 CTs: 45 prediagnostic and 83 controls). Four ML classifiers, k-nearest neighbor (KNN), support vector machine (SVM), random forest (RM), and extreme gradient boosting (XGBoost), were evaluated. Specificity of model with highest accuracy was further validated on an independent internal dataset (n = 176) and the public National Institutes of Health dataset (n = 80). Two radiologists (R4 and R5) independently evaluated the pancreas on a 5-point diagnostic scale.

Results

Median (range) time between prediagnostic CTs of the test subset and PDAC diagnosis was 386 (97–1092) days. SVM had the highest sensitivity (mean; 95% confidence interval) (95.5; 85.5–100.0), specificity (90.3; 84.3–91.5), F1-score (89.5; 82.3–91.7), area under the curve (AUC) (0.98; 0.94–0.98), and accuracy (92.2%; 86.7–93.7) for classification of CTs into prediagnostic versus normal. All 3 other ML models, KNN, RF, and XGBoost, had comparable AUCs (0.95, 0.95, and 0.96, respectively). The high specificity of SVM was generalizable to both the independent internal (92.6%) and the National Institutes of Health dataset (96.2%). In contrast, interreader radiologist agreement was only fair (Cohen's kappa 0.3) and their mean AUC (0.66; 0.46–0.86) was lower than each of the 4 ML models (AUCs: 0.95–0.98) (P < .001). Radiologists also recorded false positive indirect findings of PDAC in control subjects (n = 83) (7% R4, 18% R5).

Conclusions

Radiomics-based ML models can detect PDAC from normal pancreas when it is beyond human interrogation capability at a substantial lead time before clinical diagnosis. Prospective validation and integration of such models with complementary fluid-based biomarkers has the potential for PDAC detection at a stage when surgical cure is a possibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
28秒前
当里个当发布了新的文献求助10
33秒前
当里个当完成签到,获得积分10
43秒前
wanci应助科研通管家采纳,获得10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得30
1分钟前
cdercder应助2580你猜采纳,获得10
1分钟前
万邦德完成签到,获得积分10
1分钟前
2580你猜完成签到,获得积分10
2分钟前
3分钟前
3分钟前
yang发布了新的文献求助10
3分钟前
4分钟前
4分钟前
AM发布了新的文献求助10
4分钟前
科研通AI2S应助Jinny采纳,获得10
6分钟前
沙脑完成签到 ,获得积分10
6分钟前
铜锣湾新之助完成签到 ,获得积分10
6分钟前
彭于晏应助天空之城采纳,获得10
6分钟前
6分钟前
天空之城发布了新的文献求助10
6分钟前
传奇3应助M先生采纳,获得10
7分钟前
8分钟前
M先生发布了新的文献求助10
8分钟前
8分钟前
发发发发布了新的文献求助10
8分钟前
M先生完成签到,获得积分20
8分钟前
iacir33完成签到,获得积分20
9分钟前
小胜完成签到 ,获得积分10
10分钟前
小羊完成签到 ,获得积分10
10分钟前
10分钟前
Georgechan完成签到,获得积分10
11分钟前
科研通AI2S应助天空之城采纳,获得10
11分钟前
11分钟前
天空之城发布了新的文献求助10
11分钟前
11分钟前
12分钟前
Ulrica发布了新的文献求助10
12分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777609
求助须知:如何正确求助?哪些是违规求助? 3322988
关于积分的说明 10212867
捐赠科研通 3038350
什么是DOI,文献DOI怎么找? 1667325
邀请新用户注册赠送积分活动 798103
科研通“疑难数据库(出版商)”最低求助积分说明 758229