Auto-Segmentation Ultrasound-Based Radiomics Technology to Stratify Patient With Diabetic Kidney Disease: A Multi-Center Retrospective Study

医学 回顾性队列研究 糖尿病 分割 无线电技术 磁共振成像 放射科 内科学 人工智能 计算机科学 内分泌学
作者
Jifan Chen,Peile Jin,Yue Song,Feng Liang,Jiayue Lu,Hongjian Chen,Xiaoguang Lei,Fuqiang Qiu,Cong Zhang,Jiaxin Shen,Yong Zhao,Wen Xu,Chenxi Cai,Yan Zhou,Jinfeng Yang,Chao Zhang,Qin Chen,Jun Xiang,Pintong Huang
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:12 被引量:4
标识
DOI:10.3389/fonc.2022.876967
摘要

An increasing proportion of patients with diabetic kidney disease (DKD) has been observed among incident hemodialysis patients in large cities, which is consistent with the continuous growth of diabetes in the past 20 years.In this multicenter retrospective study, we developed a deep learning (DL)-based automatic segmentation and radiomics technology to stratify patients with DKD and evaluate the possibility of clinical application across centers.The research participants were enrolled retrospectively and separated into three parts: training, validation, and independent test datasets for further analysis. DeepLabV3+ network, PyRadiomics package, and least absolute shrinkage and selection operator were used for segmentation, extraction of radiomics variables, and regression, respectively.A total of 499 patients from three centers were enrolled in this study including 246 patients with type II diabetes mellitus (T2DM) and 253 patients with DKD. The mean intersection-over-union (Miou) and mean pixel accuracy (mPA) of automatic segmentation of the data from the three medical centers were 0.812 ± 0.003, 0.781 ± 0.009, 0.805 ± 0.020 and 0.890 ± 0.004, 0.870 ± 0.002, 0.893 ± 0.007, respectively. The variables from the renal parenchyma and sinus provided different information for the diagnosis and follow-up of DKD. The area under the curve (AUC) of the radiomics model for differentiating between DKD and T2DM patients was 0.674 ± 0.074 and for differentiating between the high and low stages of DKD was 0.803 ± 0.037.In this study, we developed a DL-based automatic segmentation, radiomics technology to stratify patients with DKD. The DL technology was proposed to achieve fast and accurate anatomical-level segmentation in the kidney, and an ultrasound-based radiomics model can achieve high diagnostic performance in the diagnosis and follow-up of patients with DKD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Pepper发布了新的文献求助10
1秒前
JamesPei应助niko采纳,获得10
1秒前
2秒前
2秒前
顾矜应助Paddi采纳,获得10
3秒前
4秒前
4秒前
5秒前
zhaodechang完成签到,获得积分10
6秒前
6秒前
汉堡包应助文静三颜采纳,获得10
7秒前
边港洋发布了新的文献求助10
7秒前
我要住giao楼完成签到 ,获得积分10
8秒前
zhaodechang发布了新的文献求助10
9秒前
wzhang发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
小蘑菇应助流星飞采纳,获得10
11秒前
11秒前
Jana应助queer采纳,获得10
12秒前
Li完成签到,获得积分10
13秒前
英俊的铭应助TAO采纳,获得10
14秒前
Gladys完成签到 ,获得积分10
14秒前
LM879发布了新的文献求助10
15秒前
15秒前
16秒前
17秒前
赵Zhao完成签到,获得积分20
17秒前
ding应助精明匪采纳,获得10
20秒前
Eason完成签到,获得积分10
20秒前
smile完成签到,获得积分10
20秒前
11完成签到,获得积分10
20秒前
lily88发布了新的文献求助10
21秒前
丘比特应助Pepper采纳,获得20
21秒前
22秒前
22秒前
TN应助小康康采纳,获得10
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455164
求助须知:如何正确求助?哪些是违规求助? 3050441
关于积分的说明 9021374
捐赠科研通 2739114
什么是DOI,文献DOI怎么找? 1502413
科研通“疑难数据库(出版商)”最低求助积分说明 694501
邀请新用户注册赠送积分活动 693293