Multifingered Robot Hand Compliant Manipulation Based on Vision-Based Demonstration and Adaptive Force Control

人工智能 阻抗控制 机器人 前馈 机器人学 计算机科学 控制器(灌溉) 遥操作 机器人控制 计算机视觉 控制工程 工程类 模拟 移动机器人 农学 生物
作者
Chao Zeng,Shuang Li,Zhaopeng Chen,Chenguang Yang,Fuchun Sun,Jianwei Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (9): 5452-5463 被引量:21
标识
DOI:10.1109/tnnls.2022.3184258
摘要

Multifingered hand dexterous manipulation is quite challenging in the domain of robotics. One remaining issue is how to achieve compliant behaviors. In this work, we propose a human-in-the-loop learning-control approach for acquiring compliant grasping and manipulation skills of a multifinger robot hand. This approach takes the depth image of the human hand as input and generates the desired force commands for the robot. The markerless vision-based teleoperation system is used for the task demonstration, and an end-to-end neural network model (i.e., TeachNet) is trained to map the pose of the human hand to the joint angles of the robot hand in real-time. To endow the robot hand with compliant human-like behaviors, an adaptive force control strategy is designed to predict the desired force control commands based on the pose difference between the robot hand and the human hand during the demonstration. The force controller is derived from a computational model of the biomimetic control strategy in human motor learning, which allows adapting the control variables (impedance and feedforward force) online during the execution of the reference joint angles. The simultaneous adaptation of the impedance and feedforward profiles enables the robot to interact with the environment compliantly. Our approach has been verified in both simulation and real-world task scenarios based on a multifingered robot hand, that is, the Shadow Hand, and has shown more reliable performances than the current widely used position control mode for obtaining compliant grasping and manipulation behaviors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助调皮万宝路采纳,获得10
2秒前
科研通AI5应助cyh采纳,获得10
2秒前
2秒前
充电宝应助海问天采纳,获得10
2秒前
搜集达人应助ypppp采纳,获得10
3秒前
4秒前
转录因子发布了新的文献求助10
5秒前
6秒前
李健成发布了新的文献求助30
6秒前
CornellRong发布了新的文献求助10
6秒前
蒸蒸日上完成签到,获得积分10
7秒前
调研昵称发布了新的文献求助10
7秒前
7秒前
8秒前
稳住完成签到,获得积分10
9秒前
明亮梦山发布了新的文献求助20
9秒前
9秒前
蒸蒸日上发布了新的文献求助10
10秒前
10秒前
10秒前
wjl发布了新的文献求助10
11秒前
12秒前
和谐绿竹发布了新的文献求助30
12秒前
Elva发布了新的文献求助10
13秒前
科研通AI5应助小胖鱼采纳,获得10
13秒前
缪尹盛完成签到,获得积分10
13秒前
13秒前
领导范儿应助周周采纳,获得10
13秒前
海问天发布了新的文献求助10
14秒前
阿言完成签到 ,获得积分10
14秒前
jcs完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
道阻且长发布了新的文献求助10
16秒前
科研通AI5应助Mae采纳,获得10
17秒前
17秒前
17秒前
ograss发布了新的文献求助10
18秒前
婧婧是我的完成签到 ,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515448
求助须知:如何正确求助?哪些是违规求助? 3097719
关于积分的说明 9236719
捐赠科研通 2792737
什么是DOI,文献DOI怎么找? 1532622
邀请新用户注册赠送积分活动 712201
科研通“疑难数据库(出版商)”最低求助积分说明 707160