Atomic‐Scale Laminated Structure of O‐Doped WS2 and Carbon Layers with Highly Enhanced Ion Transfer for Fast‐Charging Lithium‐Ion Batteries

材料科学 阳极 锂(药物) 复合数 离子 纳米颗粒 电导率 扩散 兴奋剂 碳纤维 化学工程 纳米技术 光电子学 复合材料 电极 物理化学 化学 有机化学 医学 物理 工程类 热力学 内分泌学
作者
Zhenwei Li,Yuan Fu,Meisheng Han,Jie Yu
出处
期刊:Small [Wiley]
卷期号:18 (27) 被引量:16
标识
DOI:10.1002/smll.202202495
摘要

WS2 anode materials show huge potential for fast-charging lithium-ion batteries (LIBs) due to the naturally good 2D diffusion pathways but suffer from large Li+ diffusion barrier energy and poor intrinsic electrical conductivity. Here, a defect-rich atomic-scale laminated structure of WS2 and C (D-WS2 -C) with O doping and enlarged interlayer distance from 0.62 to 1.06 nm of WS2 is first fabricated, which is assembled into micron-sized spheres to prepare WS2 /C composite microspheres. D-WS2 -C with maximized molecular layer contact area between WS2 and carbon and large interlayer spacing greatly enhances the electrical conductivity of WS2 and reduces Li-ion diffusion energy barrier, confirmed by density functional theory calculations. Besides, the unique D-WS2 -C enables the formation of vast superfine W nanoparticles (1-2 nm) during the conversation reaction, resulting in the construction of a space charge zone on W surface. Based on these characteristics of D-WS2 -C, the prepared WS2 /C composite microspheres show superior fast-charging capability with a high capacity of 647.8 mAh g-1 at 20 C in half cells. For full cells, a high-energy density of 100.9 Wh kg-1 is achieved at a charge time of only 8.5 min at 5 C, representing the best fast-charging performances in WS2 -based anode materials to date.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助喜洋洋采纳,获得10
刚刚
赘婿应助yin采纳,获得10
刚刚
1秒前
1秒前
2秒前
邢夏之发布了新的文献求助10
2秒前
2秒前
欣喜书桃完成签到,获得积分10
3秒前
3秒前
陈木木完成签到,获得积分10
3秒前
刘旭阳发布了新的文献求助10
3秒前
3秒前
hhhhhhh发布了新的文献求助10
3秒前
长情洙完成签到,获得积分10
4秒前
Lilac完成签到 ,获得积分10
4秒前
4秒前
4秒前
MissXia完成签到,获得积分10
4秒前
NUNKI完成签到,获得积分10
4秒前
迅速星星完成签到,获得积分10
4秒前
科研废物发布了新的文献求助10
5秒前
ltc完成签到,获得积分10
5秒前
科研通AI5应助诚c采纳,获得10
5秒前
Mrrr发布了新的文献求助10
5秒前
sganthem完成签到,获得积分10
5秒前
6秒前
哦吼完成签到,获得积分10
6秒前
6秒前
lm发布了新的文献求助10
7秒前
月白发布了新的文献求助10
7秒前
π.完成签到,获得积分10
8秒前
8秒前
李健应助长情洙采纳,获得10
8秒前
8秒前
科研小白完成签到,获得积分10
9秒前
9秒前
RandyD发布了新的文献求助10
9秒前
9秒前
最最最发布了新的文献求助10
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759