清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Hybridization of ResNet with YOLO classifier for automated paddy leaf disease recognition: An optimized model

深度学习 分类器(UML) 人工智能 分割 机器学习 残差神经网络 模式识别(心理学) 计算机科学 水田 农业工程 作物 农学 生物 工程类
作者
Gangadevi Ganesan,C. Jayakumar
出处
期刊:Journal of Field Robotics [Wiley]
卷期号:39 (7): 1085-1109 被引量:29
标识
DOI:10.1002/rob.22089
摘要

Abstract Paddy is the most significant crop utilized by more than 2.6 billion people. The paddy crops are affected by various diseases that are unidentified and reduced the production of crop yield. Nowadays, the plants diseases and pests spread increasingly due to the climate change, trade, and globalization. The plant pathogens can be viral, fungal, nematodes or bacterial that affects all parts of the plants. The challenging tasks are to determine the symptoms and identify the controlling measures of the plant diseases. The plant leaves can be affected by numerous diseases, which results in destruction in terms of crop field to various social and economic aspects. The deep structured architectures and machine learning are implemented in the conventional models for detecting the leaf diseases. Hence, the main intention of this study is to develop the novel model for paddy leaf disease recognition using the hybrid deep learning. Initially, the input paddy leaf images are collected from standard sources that undergo filtering and contrast enhancement approaches. Further, the segmentation of the abnormal region of the paddy leaf is done by “adaptive K‐means clustering.” This is also accomplished by the Fitness Sorted‐Shark Smell Optimization (FS‐SSO). With the segmented images, the recognition of the disease is performed by the hybrid deep learning using the Resnet and YOLO classifier. As the modification, the fully connected layer of the ResNet model is replaced by the YOLO classifier for disease recognition. The significant parameters of the hybrid deep learning are optimized by the FS‐SSO for attaining the high recognition rate. Experimental analysis is performed for computing the performance metrics and the accuracy of the classification for evaluating the efficiency of the suggested method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
范白容完成签到 ,获得积分10
46秒前
肆肆完成签到,获得积分10
1分钟前
刘刘完成签到 ,获得积分10
1分钟前
JueruiWang1258完成签到,获得积分10
1分钟前
有人应助科研通管家采纳,获得10
2分钟前
有人应助科研通管家采纳,获得10
2分钟前
有人应助科研通管家采纳,获得10
2分钟前
有人应助科研通管家采纳,获得10
2分钟前
tingyeh完成签到,获得积分10
2分钟前
甜甜玫瑰应助baolong采纳,获得10
2分钟前
丹妮完成签到 ,获得积分10
3分钟前
liuzhigang完成签到 ,获得积分10
3分钟前
有人应助科研通管家采纳,获得10
4分钟前
有人应助科研通管家采纳,获得10
4分钟前
有人应助科研通管家采纳,获得10
4分钟前
有人应助科研通管家采纳,获得10
4分钟前
有人应助科研通管家采纳,获得10
4分钟前
baolong完成签到,获得积分10
4分钟前
jeff发布了新的文献求助30
5分钟前
姚老表完成签到,获得积分10
5分钟前
爆米花应助hani采纳,获得10
6分钟前
有人应助科研通管家采纳,获得10
6分钟前
有人应助科研通管家采纳,获得10
6分钟前
有人应助科研通管家采纳,获得10
6分钟前
有人应助科研通管家采纳,获得10
6分钟前
有人应助科研通管家采纳,获得10
6分钟前
有人应助科研通管家采纳,获得30
6分钟前
有人应助科研通管家采纳,获得10
6分钟前
thangxtz完成签到,获得积分10
6分钟前
李健应助zhangyimg采纳,获得10
7分钟前
云木完成签到 ,获得积分10
7分钟前
方白秋完成签到,获得积分10
7分钟前
yangquanquan完成签到,获得积分10
7分钟前
7分钟前
zhangyimg发布了新的文献求助10
7分钟前
merrylake完成签到 ,获得积分10
7分钟前
仿真小学生完成签到,获得积分10
8分钟前
有人应助科研通管家采纳,获得10
8分钟前
有人应助科研通管家采纳,获得30
8分钟前
GCD完成签到 ,获得积分10
8分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146771
求助须知:如何正确求助?哪些是违规求助? 2798063
关于积分的说明 7826669
捐赠科研通 2454589
什么是DOI,文献DOI怎么找? 1306394
科研通“疑难数据库(出版商)”最低求助积分说明 627708
版权声明 601527