Semi-supervised feature selection via adaptive structure learning and constrained graph learning

计算机科学 人工智能 图形 机器学习 特征选择 特征学习 模式识别(心理学) 半监督学习 监督学习 冗余(工程) 特征(语言学) 最小冗余特征选择 理论计算机科学 人工神经网络 语言学 哲学 操作系统
作者
Jingliu Lai,Jihong Wan,Weiyi Li,Tianrui Li,Jihong Wan
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:251: 109243-109243 被引量:21
标识
DOI:10.1016/j.knosys.2022.109243
摘要

Graph-based sparse feature selection plays an important role in semi-supervised feature selection, which greatly improves the performance of feature selection. However, most existing semi-supervised methods based on graph are still limited in two main aspects. On the one hand, the quality of the similarity matrix will affect the performance of the learning model. Adaptive graph learning improves the quality of similarity matrix by learning the similarity matrix adaptively. However, most methods based on adaptive graph learning ignore the label information, which may limit the quality of the similarity matrix. On the other hand, many state-of-the-art methods only consider the local structure and neglect the global structure of samples, which will result in high redundancy in the selected features. To alleviate the impact of the above problems, in this study, a novel semi-supervised feature selection model named ASLCGLFS is proposed. In the proposed method, the adaptive graph learning is extended through label information, which aims to further improve the quality of the similarity matrix by utilizing the label information to constrain the graph learning. Moreover, adaptive structure learning is introduced, which not only considers the global structure but also facilitates feature selection. An iteration method is designed to solve the objective function and the convergence of this method is proved theoretically and experimentally. Extensive experiments conducted on common datasets verify that the proposed ASLCGLFS is better than some state-of-the-art feature selection algorithms in performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王崇霖发布了新的文献求助10
2秒前
3秒前
NexusExplorer应助Marciu33采纳,获得20
6秒前
CodeCraft应助周游采纳,获得10
6秒前
瞿寒发布了新的文献求助10
8秒前
8秒前
天天快乐应助xiaoxiao采纳,获得10
8秒前
zhangpp完成签到,获得积分10
8秒前
8秒前
9秒前
打打应助骑驴找马采纳,获得10
10秒前
10秒前
朱光辉完成签到,获得积分10
11秒前
念姬发布了新的文献求助10
13秒前
瞿寒完成签到,获得积分10
13秒前
赵医生发布了新的文献求助10
14秒前
阳光的紊应助xiongdi521采纳,获得30
14秒前
李健应助闪闪飞柏采纳,获得10
15秒前
方法发布了新的文献求助10
17秒前
17秒前
小二郎应助yhx046采纳,获得10
19秒前
19秒前
20秒前
TT发布了新的文献求助10
24秒前
25秒前
科研通AI2S应助哈哈哈采纳,获得30
26秒前
小二郎应助赵医生采纳,获得10
27秒前
完美世界应助方法采纳,获得10
27秒前
27秒前
28秒前
平常的半凡应助Jiaowen采纳,获得10
29秒前
您得疼完成签到,获得积分20
30秒前
孤独箴言发布了新的文献求助10
31秒前
端庄乐松发布了新的文献求助10
32秒前
您得疼发布了新的文献求助10
32秒前
Akim应助CABBAGE采纳,获得10
34秒前
34秒前
环游世界完成签到 ,获得积分10
35秒前
35秒前
彭于彦祖应助七月采纳,获得20
36秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962932
求助须知:如何正确求助?哪些是违规求助? 3508908
关于积分的说明 11143865
捐赠科研通 3241789
什么是DOI,文献DOI怎么找? 1791700
邀请新用户注册赠送积分活动 873095
科研通“疑难数据库(出版商)”最低求助积分说明 803579