Semi-supervised feature selection via adaptive structure learning and constrained graph learning

计算机科学 人工智能 图形 机器学习 特征选择 特征学习 模式识别(心理学) 半监督学习 监督学习 冗余(工程) 特征(语言学) 最小冗余特征选择 理论计算机科学 人工神经网络 语言学 哲学 操作系统
作者
Jingliu Lai,Jihong Wan,Weiyi Li,Tianrui Li,Jihong Wan
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:251: 109243-109243 被引量:21
标识
DOI:10.1016/j.knosys.2022.109243
摘要

Graph-based sparse feature selection plays an important role in semi-supervised feature selection, which greatly improves the performance of feature selection. However, most existing semi-supervised methods based on graph are still limited in two main aspects. On the one hand, the quality of the similarity matrix will affect the performance of the learning model. Adaptive graph learning improves the quality of similarity matrix by learning the similarity matrix adaptively. However, most methods based on adaptive graph learning ignore the label information, which may limit the quality of the similarity matrix. On the other hand, many state-of-the-art methods only consider the local structure and neglect the global structure of samples, which will result in high redundancy in the selected features. To alleviate the impact of the above problems, in this study, a novel semi-supervised feature selection model named ASLCGLFS is proposed. In the proposed method, the adaptive graph learning is extended through label information, which aims to further improve the quality of the similarity matrix by utilizing the label information to constrain the graph learning. Moreover, adaptive structure learning is introduced, which not only considers the global structure but also facilitates feature selection. An iteration method is designed to solve the objective function and the convergence of this method is proved theoretically and experimentally. Extensive experiments conducted on common datasets verify that the proposed ASLCGLFS is better than some state-of-the-art feature selection algorithms in performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
goldenfleece完成签到,获得积分10
刚刚
科研通AI2S应助学者采纳,获得10
刚刚
小杨完成签到,获得积分10
1秒前
sutharsons应助科研通管家采纳,获得30
2秒前
2秒前
Ava应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得30
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得30
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
Eric_Lee2000应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
2秒前
王子完成签到,获得积分10
3秒前
李繁蕊发布了新的文献求助10
4秒前
诚心的大碗应助明理念桃采纳,获得20
4秒前
5秒前
meng完成签到,获得积分10
5秒前
学者完成签到,获得积分10
5秒前
英俊的铭应助愉快盼曼采纳,获得10
6秒前
6秒前
小媛完成签到 ,获得积分10
7秒前
学术小白完成签到,获得积分20
7秒前
赘婿应助xiaomeng采纳,获得10
7秒前
Khr1stINK发布了新的文献求助10
7秒前
清新的苑博完成签到,获得积分10
7秒前
8秒前
果果瑞宁发布了新的文献求助10
9秒前
阿美发布了新的文献求助30
11秒前
11秒前
Jocelyn7完成签到,获得积分10
12秒前
wanyanjin应助yaoyao采纳,获得10
13秒前
Stephanie完成签到,获得积分20
13秒前
C_Cppp发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808