Semi-supervised feature selection via adaptive structure learning and constrained graph learning

计算机科学 人工智能 图形 机器学习 特征选择 特征学习 模式识别(心理学) 半监督学习 监督学习 冗余(工程) 特征(语言学) 最小冗余特征选择 理论计算机科学 人工神经网络 语言学 哲学 操作系统
作者
Jingliu Lai,Jihong Wan,Weiyi Li,Tianrui Li,Jihong Wan
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:251: 109243-109243 被引量:21
标识
DOI:10.1016/j.knosys.2022.109243
摘要

Graph-based sparse feature selection plays an important role in semi-supervised feature selection, which greatly improves the performance of feature selection. However, most existing semi-supervised methods based on graph are still limited in two main aspects. On the one hand, the quality of the similarity matrix will affect the performance of the learning model. Adaptive graph learning improves the quality of similarity matrix by learning the similarity matrix adaptively. However, most methods based on adaptive graph learning ignore the label information, which may limit the quality of the similarity matrix. On the other hand, many state-of-the-art methods only consider the local structure and neglect the global structure of samples, which will result in high redundancy in the selected features. To alleviate the impact of the above problems, in this study, a novel semi-supervised feature selection model named ASLCGLFS is proposed. In the proposed method, the adaptive graph learning is extended through label information, which aims to further improve the quality of the similarity matrix by utilizing the label information to constrain the graph learning. Moreover, adaptive structure learning is introduced, which not only considers the global structure but also facilitates feature selection. An iteration method is designed to solve the objective function and the convergence of this method is proved theoretically and experimentally. Extensive experiments conducted on common datasets verify that the proposed ASLCGLFS is better than some state-of-the-art feature selection algorithms in performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
3秒前
3秒前
orixero应助北风采纳,获得10
4秒前
4秒前
4秒前
4秒前
Akim应助尺八采纳,获得10
5秒前
7秒前
7秒前
Shelby发布了新的文献求助10
8秒前
车幻梦发布了新的文献求助10
8秒前
9秒前
冷静乌发布了新的文献求助10
10秒前
10秒前
ssssYyyy完成签到 ,获得积分10
10秒前
勤能补拙发布了新的文献求助10
10秒前
10秒前
肥鱼完成签到 ,获得积分10
11秒前
caibao完成签到,获得积分10
11秒前
11秒前
Shelby完成签到,获得积分10
11秒前
李健的小迷弟应助小鱼采纳,获得10
12秒前
大气白翠完成签到,获得积分10
12秒前
LL发布了新的文献求助10
12秒前
13秒前
13秒前
愉悦完成签到,获得积分10
13秒前
尺八完成签到,获得积分10
14秒前
北风发布了新的文献求助10
15秒前
jiaobuyimi发布了新的文献求助10
15秒前
尺八发布了新的文献求助10
16秒前
kreatal完成签到,获得积分20
18秒前
19秒前
星空完成签到,获得积分10
19秒前
19秒前
20秒前
科研通AI2S应助尺八采纳,获得10
21秒前
窦某发布了新的文献求助10
21秒前
高分求助中
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera, Volume 3, Part 2 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165863
求助须知:如何正确求助?哪些是违规求助? 2817106
关于积分的说明 7914966
捐赠科研通 2476623
什么是DOI,文献DOI怎么找? 1319070
科研通“疑难数据库(出版商)”最低求助积分说明 632348
版权声明 602415