Identification of Corneal Ulcers with Pre- Trained AlexNet Based on Transfer Learning

人工智能 模式识别(心理学) 计算机科学 班级(哲学) 学习迁移 排名(信息检索) 集合(抽象数据类型) 上下文图像分类 数据集 计算机视觉 图像(数学) 程序设计语言
作者
İlkay Çınar,Yavuz Selim Taşpınar,Ramazan Kursun,Murat Köklü
标识
DOI:10.1109/meco55406.2022.9797218
摘要

Artificial intelligence methods are often used in the medical field because they give objective and consistent results. In this study, the SUSTech-SYSU data set was used for the automatic classification of corneal ulcers. Classification procedures were carried out using the pre-trained AlexNet model using fluorescein staining images of corneal ulcers, which were divided into 3 different classes and labeled (3 Categories, 5 Types, 5 Grades) in the dataset. Prior to the training of the pre-trained AlexNet model, data augmentation operations were performed on corneal ulcer images. The images labeled in different classes in the data set were evaluated separately for each class and classification operations were performed. As a result of the experiments, it was determined that the images with the Type label among the classes were the most effective class in detecting corneal ulcers, and as a result of the classification, an accuracy of 80.42% was achieved. After the Type-labeled image class, the Category and Grade classes, respectively, were included in the effectiveness ranking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暮然发布了新的文献求助10
1秒前
感冒了发布了新的文献求助10
1秒前
1秒前
pangdahai完成签到,获得积分10
2秒前
明天开始戒绿茶完成签到,获得积分10
2秒前
jessieinfrance完成签到,获得积分10
2秒前
2秒前
3秒前
eden完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
汉堡包应助微弱de胖头采纳,获得10
5秒前
5秒前
6秒前
firy完成签到,获得积分10
6秒前
7秒前
王子语发布了新的文献求助10
8秒前
邓佳鑫Alan应助2000dw采纳,获得10
8秒前
明亮不乐发布了新的文献求助10
8秒前
8秒前
8秒前
丘比特应助Yang采纳,获得30
9秒前
研友_VZG7GZ应助eden采纳,获得10
9秒前
张雯思发布了新的文献求助10
9秒前
张雯思发布了新的文献求助10
9秒前
myjf发布了新的文献求助10
9秒前
聪明无颜发布了新的文献求助30
9秒前
10秒前
11秒前
hkh发布了新的文献求助10
12秒前
12秒前
无花果应助高大美采纳,获得10
12秒前
lianqing发布了新的文献求助10
12秒前
李峙完成签到,获得积分10
13秒前
222123发布了新的文献求助10
13秒前
单纯紫菱发布了新的文献求助10
13秒前
14秒前
REN发布了新的文献求助20
14秒前
yys发布了新的文献求助20
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961767
求助须知:如何正确求助?哪些是违规求助? 3508099
关于积分的说明 11139632
捐赠科研通 3240798
什么是DOI,文献DOI怎么找? 1791052
邀请新用户注册赠送积分活动 872720
科研通“疑难数据库(出版商)”最低求助积分说明 803344