Identification of Corneal Ulcers with Pre- Trained AlexNet Based on Transfer Learning

人工智能 模式识别(心理学) 计算机科学 班级(哲学) 学习迁移 排名(信息检索) 集合(抽象数据类型) 上下文图像分类 数据集 计算机视觉 图像(数学) 程序设计语言
作者
İlkay Çınar,Yavuz Selim Taşpınar,Ramazan Kursun,Murat Köklü
标识
DOI:10.1109/meco55406.2022.9797218
摘要

Artificial intelligence methods are often used in the medical field because they give objective and consistent results. In this study, the SUSTech-SYSU data set was used for the automatic classification of corneal ulcers. Classification procedures were carried out using the pre-trained AlexNet model using fluorescein staining images of corneal ulcers, which were divided into 3 different classes and labeled (3 Categories, 5 Types, 5 Grades) in the dataset. Prior to the training of the pre-trained AlexNet model, data augmentation operations were performed on corneal ulcer images. The images labeled in different classes in the data set were evaluated separately for each class and classification operations were performed. As a result of the experiments, it was determined that the images with the Type label among the classes were the most effective class in detecting corneal ulcers, and as a result of the classification, an accuracy of 80.42% was achieved. After the Type-labeled image class, the Category and Grade classes, respectively, were included in the effectiveness ranking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
athenalin1988完成签到,获得积分10
刚刚
核桃发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
上官若男应助周五采纳,获得30
3秒前
科研通AI5应助鲜艳的帅哥采纳,获得10
3秒前
HJJHJH发布了新的文献求助10
4秒前
S-Lab Sonic完成签到,获得积分10
4秒前
5秒前
沙亮完成签到 ,获得积分10
5秒前
妮子完成签到,获得积分10
5秒前
TK发布了新的文献求助10
6秒前
6秒前
hyg发布了新的文献求助10
6秒前
8秒前
英俊的铭应助xiu采纳,获得10
8秒前
烟花应助HJJHJH采纳,获得10
9秒前
耍酷弱发布了新的文献求助10
9秒前
李健的小迷弟应助孙1采纳,获得10
14秒前
14秒前
15秒前
why发布了新的文献求助10
15秒前
18秒前
20秒前
汉堡包应助11tty采纳,获得10
21秒前
21秒前
圣尊鳕幽发布了新的文献求助10
21秒前
Firmian完成签到,获得积分10
22秒前
22秒前
花生糕发布了新的文献求助10
22秒前
23秒前
morena发布了新的文献求助30
24秒前
xiu发布了新的文献求助10
25秒前
26秒前
Ava应助芝士雪豹采纳,获得30
26秒前
不想科研应助小小笑笑采纳,获得10
28秒前
所所应助花生糕采纳,获得10
28秒前
guojingjing发布了新的文献求助10
29秒前
30秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208817
求助须知:如何正确求助?哪些是违规求助? 4386099
关于积分的说明 13660012
捐赠科研通 4245182
什么是DOI,文献DOI怎么找? 2329154
邀请新用户注册赠送积分活动 1326960
关于科研通互助平台的介绍 1279228