An automatic approach for tree species detection and profile estimation of urban street trees using deep learning and Google street view images

树(集合论) 基本事实 分割 计算机科学 城市林业 人工智能 树冠 遥感 地理 模式识别(心理学) 天蓬 数学 林业 数学分析 考古
作者
Kwanghun Choi,Wontaek Lim,Byungwoo Chang,Jinah Jeong,Inyoo Kim,Chan‐Ryul Park,Dongwook W. Ko
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:190: 165-180 被引量:64
标识
DOI:10.1016/j.isprsjprs.2022.06.004
摘要

Tree species and canopy structural profile (‘tree profile’) are among the most critical environmental factors in determining urban ecosystem services such as climate and air quality control from urban trees. To accurately characterize a tree profile, the tree diameter, height, crown width, and height to the lowest live branch must be all measured, which is an expensive and time-consuming procedure. Recent advances in artificial intelligence aids to efficiently and accurately measure the aforementioned tree profile parameters. This can be particularly helpful if spatially extensive and accurate street-level images provided by Google (‘streetview’) or Kakao (‘roadview’) are utilized. We focused on street trees in Seoul, the capital city of South Korea, and suggested a novel approach to create a tree profile and inventory based on deep learning algorithms. We classified urban tree species using the YOLO (You Only Look Once), one of the most popular deep learning object detection algorithms, which provides an uncomplicated method of creating datasets with custom classes. We further utilized semantic segmentation algorithm and graphical analysis to estimate tree profile parameters by determining the relative location of the interface of tree and ground surface. We evaluated the performance of the model by comparing the estimated tree heights, diameters, and locations from the model with the field measurements as ground truth. The results are promising and demonstrate the potential of the method for creating urban street tree profile inventory. In terms of tree species classification, the method showed the mean average precision (mAP) of 0.564. When we used the ideal tree images, the method also reported the normalized root mean squared error (NRMSE) for the tree height, diameter at breast height (DBH), and distances from the camera to the trees as 0.24, 0.44, and 0.41.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助花海采纳,获得10
5秒前
6秒前
量子星尘发布了新的文献求助50
7秒前
落落完成签到,获得积分10
8秒前
西木完成签到,获得积分10
11秒前
15秒前
左丘芷卉完成签到,获得积分10
15秒前
15秒前
17秒前
瘦瘦的果汁完成签到,获得积分10
18秒前
愚者完成签到,获得积分10
20秒前
傻傻的飞丹完成签到 ,获得积分10
21秒前
小二郎应助Dreamhappy采纳,获得10
22秒前
25秒前
量子星尘发布了新的文献求助30
25秒前
和谐的醉山完成签到,获得积分0
27秒前
我们仨完成签到 ,获得积分10
29秒前
徐畅完成签到 ,获得积分10
35秒前
晓风完成签到,获得积分10
37秒前
英姑应助科研通管家采纳,获得10
39秒前
充电宝应助科研通管家采纳,获得10
39秒前
zgrmws应助科研通管家采纳,获得10
40秒前
乐乐应助wujiwuhui采纳,获得10
40秒前
40秒前
40秒前
汉堡包应助科研通管家采纳,获得10
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
40秒前
40秒前
GingerF应助科研通管家采纳,获得10
40秒前
GingerF应助科研通管家采纳,获得10
40秒前
40秒前
感叹完成签到 ,获得积分10
41秒前
andylue完成签到,获得积分10
41秒前
马淑贤完成签到 ,获得积分10
43秒前
SDNUDRUG发布了新的文献求助10
43秒前
量子星尘发布了新的文献求助10
44秒前
靓丽的悟空完成签到 ,获得积分10
45秒前
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5796286
求助须知:如何正确求助?哪些是违规求助? 5775163
关于积分的说明 15491606
捐赠科研通 4923302
什么是DOI,文献DOI怎么找? 2650299
邀请新用户注册赠送积分活动 1597526
关于科研通互助平台的介绍 1552158