伤口愈合
炎症
血管生成
光动力疗法
间充质干细胞
材料科学
癌症研究
医学
化学
免疫学
细胞生物学
生物
有机化学
作者
Baohong Sun,Fan Wu,Xinye Wang,Qiuxian Song,Ziqiu Ye,Mohsen Mohammadniaei,Ming Zhang,Xiaohong Chu,Sheng Xi,Ninglin Zhou,Sheng Wang,Cheng Yao,Jian Shen
出处
期刊:Small
[Wiley]
日期:2022-05-31
卷期号:18 (26)
被引量:47
标识
DOI:10.1002/smll.202200895
摘要
Oxidative stress and local overactive inflammation have been considered major obstacles in diabetic wound treatment. Although antiphlogistic tactics have been reported widely, they are also challenged by pathogen contamination and compromised angiogenesis. Herein, a versatile integrated nanoagent based on 2D reductive covalent organic frameworks coated with antibacterial immuno-engineered exosome (PCOF@E-Exo) is reported to achieve efficient and comprehensive combination therapy for diabetic wounds. The E-Exo is collected from TNF-α-treated mesenchymal stem cells (MSCs) under hypoxia and encapsulated cationic antimicrobial carbon dots (CDs). This integrated nanoagent not only significantly scavenges reactive oxygen species and induces anti-inflammatory M2 macrophage polarization, but also stabilizes hypoxia-inducible factor-1α (HIF-1α). More importantly, the PCOF@E-Exo exhibits intriguing bactericide capabilities toward Gram-negative, Gram-positive, and drug-resistant bacteria, showing favorable intracellular bacterial destruction and biofilm permeation. In vivo results demonstrate that the synergetic impact of suppressing oxidative injury and tissue inflammation, promoting angiogenesis and eradicating bacterial infection, could significantly accelerate the infected diabetic fester wound healing with better therapeutic benefits than monotherapy or individual antibiotics. The proposed strategy can inspire further research to design more delicate platforms using the combination of immunotherapy with other therapeutic methods for more efficient ulcerated diabetic wounds treatments.
科研通智能强力驱动
Strongly Powered by AbleSci AI