亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Transformer-Based Deep-Learning Algorithm for Discriminating Demyelinating Diseases of the Central Nervous System With Neuroimaging

医学 视神经脊髓炎 多发性硬化 磁共振成像 视神经炎 急性播散性脑脊髓炎 神经影像学 髓鞘少突胶质细胞糖蛋白 脊髓 放射科 病理 实验性自身免疫性脑脊髓炎 免疫学 精神科
作者
Chuxin Huang,Weidao Chen,Baiyun Liu,Ruize Yu,Xiqian Chen,Fei Tang,Jun Liu,Wei Lu
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:13 被引量:10
标识
DOI:10.3389/fimmu.2022.897959
摘要

Differential diagnosis of demyelinating diseases of the central nervous system is a challenging task that is prone to errors and inconsistent reading, requiring expertise and additional examination approaches. Advancements in deep-learning-based image interpretations allow for prompt and automated analyses of conventional magnetic resonance imaging (MRI), which can be utilized in classifying multi-sequence MRI, and thus may help in subsequent treatment referral.Imaging and clinical data from 290 patients diagnosed with demyelinating diseases from August 2013 to October 2021 were included for analysis, including 67 patients with multiple sclerosis (MS), 162 patients with aquaporin 4 antibody-positive (AQP4+) neuromyelitis optica spectrum disorder (NMOSD), and 61 patients with myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). Considering the heterogeneous nature of lesion size and distribution in demyelinating diseases, multi-modal MRI of brain and/or spinal cord were utilized to build the deep-learning model. This novel transformer-based deep-learning model architecture was designed to be versatile in handling with multiple image sequences (coronal T2-weighted and sagittal T2-fluid attenuation inversion recovery) and scanning locations (brain and spinal cord) for differentiating among MS, NMOSD, and MOGAD. Model performances were evaluated using the area under the receiver operating curve (AUC) and the confusion matrices measurements. The classification accuracy between the fusion model and the neuroradiological raters was also compared.The fusion model that was trained with combined brain and spinal cord MRI achieved an overall improved performance, with the AUC of 0.933 (95%CI: 0.848, 0.991), 0.942 (95%CI: 0.879, 0.987) and 0.803 (95%CI: 0.629, 0.949) for MS, AQP4+ NMOSD, and MOGAD, respectively. This exceeded the performance using the brain or spinal cord MRI alone for the identification of the AQP4+ NMOSD (AUC of 0.940, brain only and 0.689, spinal cord only) and MOGAD (0.782, brain only and 0.714, spinal cord only). In the multi-category classification, the fusion model had an accuracy of 81.4%, which was significantly higher compared to rater 1 (64.4%, p=0.04<0.05) and comparable to rater 2 (74.6%, p=0.388).The proposed novel transformer-based model showed desirable performance in the differentiation of MS, AQP4+ NMOSD, and MOGAD on brain and spinal cord MRI, which is comparable to that of neuroradiologists. Our model is thus applicable for interpretating conventional MRI in the differential diagnosis of demyelinating diseases with overlapping lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DrleedsG发布了新的文献求助200
1分钟前
1分钟前
Polymer72应助科研通管家采纳,获得10
1分钟前
Polymer72应助科研通管家采纳,获得10
1分钟前
Polymer72应助科研通管家采纳,获得10
1分钟前
Polymer72应助科研通管家采纳,获得10
1分钟前
米糖安发布了新的文献求助10
1分钟前
lisaltp完成签到,获得积分10
2分钟前
米糖安完成签到,获得积分10
2分钟前
xinqianying完成签到 ,获得积分10
3分钟前
iris完成签到,获得积分20
3分钟前
DrleedsG完成签到,获得积分10
3分钟前
3分钟前
Polymer72应助科研通管家采纳,获得10
3分钟前
Polymer72应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
重要元灵完成签到 ,获得积分10
5分钟前
吾系渣渣辉完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
Polymer72完成签到,获得积分0
5分钟前
黑球发布了新的文献求助10
5分钟前
Tethys完成签到 ,获得积分10
5分钟前
黑球完成签到,获得积分10
5分钟前
Polymer72应助科研通管家采纳,获得10
5分钟前
5分钟前
ght完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
He发布了新的文献求助10
7分钟前
He发布了新的文献求助10
7分钟前
He发布了新的文献求助10
7分钟前
CSun完成签到,获得积分10
7分钟前
CSun发布了新的文献求助10
7分钟前
高兴凝安完成签到 ,获得积分10
7分钟前
Polymer72应助科研通管家采纳,获得10
7分钟前
Polymer72应助科研通管家采纳,获得10
7分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
RNAの科学 ―時代を拓く生体分子― 金井 昭夫(編) 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353504
求助须知:如何正确求助?哪些是违规求助? 2978145
关于积分的说明 8683813
捐赠科研通 2659514
什么是DOI,文献DOI怎么找? 1456277
科研通“疑难数据库(出版商)”最低求助积分说明 674310
邀请新用户注册赠送积分活动 665020