Multilayer Networks

相互依存的网络 计算机科学 复杂网络 渗透(认知心理学) 相互依存 分布式计算 同步(交流) 网络科学 领域(数学) 可控性 拓扑(电路) 计算机网络 工程类 数学 政治学 纯数学 法学 应用数学 神经科学 万维网 频道(广播) 电气工程 生物
作者
Ginestra Bianconi
出处
期刊:Oxford University Press eBooks [Oxford University Press]
被引量:192
标识
DOI:10.1093/oso/9780198753919.001.0001
摘要

Abstract Multilayer networks are formed by several networks that interact with each other and co-evolve. Multilayer networks include social networks, financial markets, transportation systems, infrastructures and molecular networks and the brain. The multilayer structure of these networks strongly affects the properties of dynamical and stochastic processes defined on them, which can display unexpected characteristics. For example, interdependencies between different networks of a multilayer structure can cause cascades of failure events that can dramatically increase the fragility of these systems; spreading of diseases, opinions and ideas might take advantage of multilayer network topology and spread even when its single layers cannot sustain an epidemic when taken in isolation; diffusion on multilayer transportation networks can significantly speed up with respect to diffusion on single layers; finally, the interplay between multiplexity and controllability of multilayer networks is a problem with major consequences in financial, transportation, molecular biology and brain networks. This field is one of the most prosperous recent developments of Network Science and Data Science. Multilayer networks include multiplex networks, multi-slice temporal networks, networks of networks, interdependent networks. Multilayer networks are characterized by having a highly correlated multilayer network structure, providing a significant advantage for extracting information from them using multilayer network measures and centralities and community detection methods. The multilayer network dynamics (including percolation, epidemic spreading, diffusion, synchronization, game theory and control) is strongly affected by the multilayer network topology. This book will present a comprehensive account of this emerging field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助啊薇儿采纳,获得10
刚刚
1秒前
闫什应助不忘初心采纳,获得10
3秒前
星辰大海应助ssf采纳,获得10
3秒前
小蘑菇应助wQ1ng采纳,获得10
3秒前
4秒前
搜集达人应助Lee采纳,获得10
7秒前
7秒前
wuming完成签到,获得积分10
8秒前
8秒前
10秒前
111完成签到,获得积分20
11秒前
12秒前
杨嘉蔚发布了新的文献求助10
13秒前
13秒前
13秒前
康谨完成签到 ,获得积分10
13秒前
wanci应助lv采纳,获得10
14秒前
啊薇儿发布了新的文献求助10
14秒前
巴达天使发布了新的文献求助30
14秒前
肾宝发布了新的文献求助10
14秒前
李健应助披日悬光采纳,获得10
16秒前
17秒前
一一完成签到,获得积分10
17秒前
Kyone完成签到,获得积分10
17秒前
wwz应助尹小末采纳,获得10
17秒前
19秒前
20秒前
21秒前
JamesPei应助迅速的钢铁侠采纳,获得10
21秒前
华仔应助Wendy采纳,获得10
22秒前
22秒前
爆米花应助豆豆采纳,获得10
22秒前
22秒前
cic发布了新的文献求助10
23秒前
所所应助小菜熊ya采纳,获得10
23秒前
23秒前
无花果应助阿九采纳,获得10
23秒前
23秒前
平安发布了新的文献求助10
24秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208035
求助须知:如何正确求助?哪些是违规求助? 4385800
关于积分的说明 13658380
捐赠科研通 4244557
什么是DOI,文献DOI怎么找? 2328881
邀请新用户注册赠送积分活动 1326584
关于科研通互助平台的介绍 1278735