Multi-Target Track Initiation in Heavy Clutter

杂乱 计算机科学 算法 恒虚警率 滤波器(信号处理) 霍夫变换 人工智能 磁道(磁盘驱动器) 模糊逻辑 计算机视觉 雷达 图像(数学) 电信 操作系统
作者
Xu Li,Ruzhen Lou,Chuanbin Zhang,Bo Lang,Weiyue Ding
出处
期刊:Computers, materials & continua 卷期号:72 (3): 4489-4507 被引量:1
标识
DOI:10.32604/cmc.2022.027400
摘要

In the heavy clutter environment, the information capacity is large, the relationships among information are complicated, and track initiation often has a high false alarm rate or missing alarm rate. Obviously, it is a difficult task to get a high-quality track initiation in the limited measurement cycles. This paper studies the multi-target track initiation in heavy clutter. At first, a relaxed logic-based clutter filter algorithm is presented. In the algorithm, the raw measurement is filtered by using the relaxed logic method. We not only design a kind of incremental and adaptive filtering gate, but also add the angle extrapolation based on polynomial extrapolation. The algorithm eliminates most of the clutter and obtains the environment with high detection rate and less clutter. Then, we propose a fuzzy sequential Hough transform-based track initiation algorithm. The algorithm establishes a new meshing rule according to system noise to balance the relationship between the grid granularity and the track initiation quality. And a flexible superposition matrix based on fuzzy clustering is constructed, which avoids the transformation error caused by 0–1 voting method in traditional Hough transform. In addition, the algorithm allows the superposition matrixes of nonadjacent cycles to be associated to overcome the shortcoming that the track can’t be initiated in time when the measurements appear in an intermittent way. And a slope verification method is introduced to detect formation-intensive serial tracks. Last, the sliding window method is employed to feedback the track initiation results timely and confirm the track. Simulation results verify that the proposed algorithms can initiate the tracks accurately in heavy clutter.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Jing完成签到,获得积分20
2秒前
喵喵完成签到 ,获得积分20
2秒前
徐小树发布了新的文献求助30
3秒前
Joaquin完成签到,获得积分10
4秒前
lue完成签到,获得积分10
4秒前
jianwuzhou发布了新的文献求助50
5秒前
上官若男应助CL采纳,获得10
6秒前
6秒前
6秒前
6秒前
一只熊发布了新的文献求助10
7秒前
勤劳半芹完成签到,获得积分10
7秒前
Singularity应助舒适路人采纳,获得10
7秒前
英姑应助咖喱酱采纳,获得10
7秒前
8秒前
村村发布了新的文献求助10
8秒前
9秒前
大模型应助Stephen采纳,获得10
9秒前
思源应助paul52020采纳,获得10
10秒前
852应助patrickstar采纳,获得10
10秒前
小恶于发布了新的文献求助10
11秒前
11秒前
金阿垚在科研应助太云集采纳,获得10
11秒前
12秒前
科研小弟完成签到,获得积分10
12秒前
13秒前
科研通AI5应助Tzzl0226采纳,获得10
13秒前
爆米花应助nxxxxxxxxxx采纳,获得10
14秒前
Loooong应助小龙采纳,获得10
15秒前
涂生发布了新的文献求助20
15秒前
aaaaa完成签到,获得积分10
17秒前
18秒前
神探发布了新的文献求助10
18秒前
19秒前
科目三应助舒适路人采纳,获得10
19秒前
从心应助一只咸鱼采纳,获得10
19秒前
20秒前
科研通AI2S应助Rocc采纳,获得10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3525857
求助须知:如何正确求助?哪些是违规求助? 3106392
关于积分的说明 9279938
捐赠科研通 2803927
什么是DOI,文献DOI怎么找? 1539116
邀请新用户注册赠送积分活动 716462
科研通“疑难数据库(出版商)”最低求助积分说明 709449