FeNet: Feature Enhancement Network for Lightweight Remote-Sensing Image Super-Resolution

计算机科学 特征提取 水准点(测量) 特征(语言学) 块(置换群论) 编码(集合论) 卷积(计算机科学) 遥感 模式识别(心理学) 人工智能 人工神经网络 算法 计算机工程 数据挖掘 地质学 数学 哲学 集合(抽象数据类型) 语言学 程序设计语言 大地测量学 几何学
作者
Zheyuan Wang,Liangliang Li,Yuan Xue,Chenchen Jiang,Jiawen Wang,Kaipeng Sun,Hongbing Ma
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-12 被引量:39
标识
DOI:10.1109/tgrs.2022.3168787
摘要

In the field of remote sensing, due to memory consumption and computational burden, the single-image super-resolution (SISR) methods based on deep convolution neural networks (CNNs) are limited in practical application. To address this problem, we propose a lightweight feature enhancement network (FeNet) for accurate remote-sensing image super-resolution (SR). Considering the existence of equipment with extremely poor hardware facilities, we further design a lighter FeNet-baseline with about 158K parameters. Specifically, inspired by lattice structure, we construct a lightweight lattice block (LLB) as a nonlinear feature extraction function to improve the expression ability. Here, channel separation operation makes the upper and lower branches of the LLB only responsible for half of the features, and the weight coefficients calculated through the attention mechanism enable the upper and lower branches to communicate efficiently. Based on LLB, the feature enhancement block (FEB) is designed in a nested manner to obtain expressive features, where different layers are responsible for the features with different texture richness, and then features from different layers are sequentially fused from deep to shallow. Model parameters and multi-adds operations are used to evaluate network complexity, and extensive experiments on two remote-sensing and four SR benchmark test datasets show that our methods can achieve a good tradeoff between complexity and performance. Our code will be available at https://github.com/wangzheyuan-666/FeNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朴素的鸡翅完成签到,获得积分10
1秒前
1秒前
2秒前
Trust发布了新的文献求助10
4秒前
5秒前
6秒前
刻苦海豚发布了新的文献求助10
6秒前
llllzzh完成签到 ,获得积分10
8秒前
9秒前
Emily发布了新的文献求助10
10秒前
虚心幼翠完成签到,获得积分10
10秒前
小马甲应助7777采纳,获得10
11秒前
科研通AI5应助刻苦海豚采纳,获得10
13秒前
李健应助寒水沉烟采纳,获得10
14秒前
14秒前
打打应助内向萃采纳,获得10
20秒前
24秒前
咕咕甜发布了新的文献求助20
26秒前
yxt发布了新的文献求助10
26秒前
SYLH应助加贝采纳,获得10
28秒前
TScwxtxdy完成签到,获得积分10
28秒前
机灵飞兰发布了新的文献求助10
29秒前
今后应助amy采纳,获得10
31秒前
帅气一刀完成签到,获得积分10
33秒前
Sea_U应助木野狐采纳,获得10
34秒前
月半摘葡萄完成签到,获得积分10
34秒前
Akim应助jacs111采纳,获得10
36秒前
yxt完成签到,获得积分10
37秒前
wuta完成签到,获得积分10
39秒前
炙热灵完成签到,获得积分20
41秒前
gecko19gecko发布了新的文献求助10
41秒前
闪闪的YOSH完成签到,获得积分10
41秒前
赘婿应助Charlotte采纳,获得30
41秒前
酷波er应助无情香烟采纳,获得10
41秒前
43秒前
pluto应助咕咕甜采纳,获得10
44秒前
共享精神应助聪明胡图图采纳,获得10
44秒前
45秒前
46秒前
今后应助xingxinghan采纳,获得10
46秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734540
求助须知:如何正确求助?哪些是违规求助? 3278476
关于积分的说明 10009741
捐赠科研通 2995084
什么是DOI,文献DOI怎么找? 1643196
邀请新用户注册赠送积分活动 780989
科研通“疑难数据库(出版商)”最低求助积分说明 749196