Temperature induced transformation of Co@C nanoparticle in 3D hierarchical core-shell nanofiber network for enhanced electromagnetic wave adsorption

材料科学 反射损耗 纳米颗粒 复合材料 衰减 微波食品加热 碳纳米纤维 纳米技术 光电子学 复合数 碳纳米管 光学 电信 计算机科学 物理
作者
Wenhuan Huang,Shun Wang,Xiufang Yang,Xingxing Zhang,Yanan Zhang,Ke Pei,Renchao Che
出处
期刊:Carbon [Elsevier]
卷期号:195: 44-56 被引量:84
标识
DOI:10.1016/j.carbon.2022.04.019
摘要

Developing high-performance electromagnetic wave absorbing materials (EWAMs) with tunable nano-microstructures is of great significance for solving increased electromagnetic radiation pollution. Three-dimensional hierarchical networks within magnetic metal nanoparticles are promising candidates with the great balance of enhanced electromagnetic wave attenuation and impedance matching, but hard to construct. Herein, a two-step electrospinning/in-situ self-assembly strategy was employed, successfully synthesizing a 3D hierarchical core-shell NC@Co/NC nanofiber network (NC@Co/NC-900). The N-doped Carbon (NC) core fibers (diameter of ∼250 nm) built a 3D-conductive network, while the Co@C nanoparticles (diameter of ∼20 nm) embedded into N-doped Carbon (Co/NC) shell (thickness of ∼50 nm) enhanced the polarization loss and magnetic loss. More importantly, the controlled transformation of Co@C nanoparticles in the shell was realized by modulating the calcination temperature at 900 °C, showing an optimal homogeneously dispersion in a narrow particle size distribution in the range of 15–25 nm. Uniformly multiple reflection in core-shell NC@Co/NC-900 fiber network enhanced the electromagnetic wave attenuation with the optimal impedance matching, displaying excellent RLmin of −55.82 dB at 11.60 GHz and wide EAB of 7.44 GHz in a low filler loading of 15 wt %. The whole X and Ku bands could be fully covered in different thickness of 4.0 and 3.0 mm. This work presents a superior nano-micro structural design strategy on 3D hierarchical networks with multiple reflections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
无极微光应助科研通管家采纳,获得20
刚刚
HAL应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得30
刚刚
刚刚
路人应助科研通管家采纳,获得200
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
CR7应助科研通管家采纳,获得20
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
1秒前
Yu应助科研通管家采纳,获得10
1秒前
1秒前
pluto应助科研通管家采纳,获得10
1秒前
成事在人307完成签到,获得积分10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
吕洺旭应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
后来应助科研通管家采纳,获得10
1秒前
1秒前
闪闪的乐松完成签到 ,获得积分10
1秒前
HAL应助科研通管家采纳,获得10
1秒前
彭于彦祖应助科研通管家采纳,获得30
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
风清扬应助科研通管家采纳,获得30
2秒前
2秒前
传奇3应助科研通管家采纳,获得20
2秒前
思源应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603729
求助须知:如何正确求助?哪些是违规求助? 4688711
关于积分的说明 14855620
捐赠科研通 4694855
什么是DOI,文献DOI怎么找? 2540965
邀请新用户注册赠送积分活动 1507131
关于科研通互助平台的介绍 1471814