A multi-head attention-based transformer model for traffic flow forecasting with a comparative analysis to recurrent neural networks

计算机科学 变压器 循环神经网络 人工神经网络 编码器 时间序列 人工智能 短时记忆 机器学习 数据挖掘 电压 工程类 电气工程 操作系统
作者
Selim Reza,Marta Campos Ferreira,José J. M. Machado,João Manuel R. S. Tavares
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:202: 117275-117275 被引量:114
标识
DOI:10.1016/j.eswa.2022.117275
摘要

Traffic flow forecasting is an essential component of an intelligent transportation system to mitigate congestion. Recurrent neural networks, particularly gated recurrent units and long short-term memory, have been the state-of-the-art traffic flow forecasting models for the last few years. However, a more sophisticated and resilient model is necessary to effectively acquire long-range correlations in the time-series data sequence under analysis. The dominant performance of transformers by overcoming the drawbacks of recurrent neural networks in natural language processing might tackle this need and lead to successful time-series forecasting. This article presents a multi-head attention based transformer model for traffic flow forecasting with a comparative analysis between a gated recurrent unit and a long-short term memory-based model on PeMS dataset in this context. The model uses 5 heads with 5 identical layers of encoder and decoder and relies on Square Subsequent Masking techniques. The results demonstrate the promising performance of the transform-based model in predicting long-term traffic flow patterns effectively after feeding it with substantial amount of data. It also demonstrates its worthiness by increasing the mean squared errors and mean absolute percentage errors by (1.25−47.8)% and (32.4−83.8)%, respectively, concerning the current baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
djiwisksk66应助shinn采纳,获得10
1秒前
2秒前
幽默的小之完成签到,获得积分10
2秒前
烟花应助易烊干洗采纳,获得10
2秒前
2秒前
5165asd完成签到,获得积分10
3秒前
3秒前
4秒前
Crazy完成签到 ,获得积分10
5秒前
wwwwwwjh完成签到,获得积分10
6秒前
银杏叶发布了新的文献求助10
6秒前
6秒前
HOXXXiii发布了新的文献求助10
7秒前
xuanyu发布了新的文献求助100
8秒前
Haonan完成签到,获得积分10
9秒前
小乐完成签到 ,获得积分10
9秒前
耍酷的冷雪完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
小阳完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
木头人应助Billy采纳,获得10
14秒前
易烊干洗发布了新的文献求助10
16秒前
热心市民小红花应助wendy采纳,获得10
16秒前
传奇3应助shinn采纳,获得10
17秒前
18秒前
一颗有理想的蛋完成签到 ,获得积分10
19秒前
Owen应助笑点低的丹烟采纳,获得10
20秒前
852应助笑点低的丹烟采纳,获得10
20秒前
20秒前
20秒前
SciGPT应助Mely0203采纳,获得10
21秒前
田様应助小阳采纳,获得10
23秒前
RATHER发布了新的文献求助10
24秒前
24秒前
凌风发布了新的文献求助10
24秒前
迷路的祥发布了新的文献求助10
25秒前
25秒前
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952472
求助须知:如何正确求助?哪些是违规求助? 3497823
关于积分的说明 11089109
捐赠科研通 3228398
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868943
科研通“疑难数据库(出版商)”最低求助积分说明 801309