A multi-head attention-based transformer model for traffic flow forecasting with a comparative analysis to recurrent neural networks

计算机科学 变压器 循环神经网络 人工神经网络 编码器 时间序列 人工智能 短时记忆 机器学习 数据挖掘 电压 工程类 电气工程 操作系统
作者
Selim Reza,Marta Campos Ferreira,José J. M. Machado,João Manuel R. S. Tavares
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:202: 117275-117275 被引量:114
标识
DOI:10.1016/j.eswa.2022.117275
摘要

Traffic flow forecasting is an essential component of an intelligent transportation system to mitigate congestion. Recurrent neural networks, particularly gated recurrent units and long short-term memory, have been the state-of-the-art traffic flow forecasting models for the last few years. However, a more sophisticated and resilient model is necessary to effectively acquire long-range correlations in the time-series data sequence under analysis. The dominant performance of transformers by overcoming the drawbacks of recurrent neural networks in natural language processing might tackle this need and lead to successful time-series forecasting. This article presents a multi-head attention based transformer model for traffic flow forecasting with a comparative analysis between a gated recurrent unit and a long-short term memory-based model on PeMS dataset in this context. The model uses 5 heads with 5 identical layers of encoder and decoder and relies on Square Subsequent Masking techniques. The results demonstrate the promising performance of the transform-based model in predicting long-term traffic flow patterns effectively after feeding it with substantial amount of data. It also demonstrates its worthiness by increasing the mean squared errors and mean absolute percentage errors by (1.25−47.8)% and (32.4−83.8)%, respectively, concerning the current baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
吱嗷赵完成签到,获得积分20
刚刚
MADKAI发布了新的文献求助20
1秒前
木木完成签到,获得积分10
1秒前
1秒前
Jenny应助强健的月饼采纳,获得10
2秒前
记号完成签到,获得积分10
2秒前
玛卡巴卡完成签到,获得积分10
2秒前
KissesU完成签到 ,获得积分10
3秒前
大厨懒洋洋完成签到,获得积分10
3秒前
3秒前
咕噜仔发布了新的文献求助10
4秒前
Nelson_Foo完成签到,获得积分10
4秒前
Ll发布了新的文献求助10
4秒前
@_@完成签到,获得积分10
5秒前
hhh发布了新的文献求助10
5秒前
su完成签到,获得积分20
5秒前
GAO完成签到,获得积分10
5秒前
单纯乞完成签到,获得积分10
5秒前
守夜人发布了新的文献求助10
6秒前
liuchao发布了新的文献求助10
6秒前
逃之姚姚完成签到 ,获得积分10
6秒前
hy完成签到 ,获得积分20
7秒前
xhy发布了新的文献求助10
7秒前
新一完成签到,获得积分20
7秒前
碧阳的尔风完成签到,获得积分10
7秒前
桐桐应助ting采纳,获得10
7秒前
传奇3应助jagger采纳,获得30
8秒前
chen发布了新的文献求助10
8秒前
andyxrz完成签到,获得积分20
8秒前
清爽冬莲完成签到 ,获得积分10
8秒前
CodeCraft应助柠檬采纳,获得10
10秒前
库里晚安完成签到,获得积分10
10秒前
A1len完成签到 ,获得积分10
11秒前
星辰大海应助sokach采纳,获得10
12秒前
新一发布了新的文献求助30
12秒前
守夜人完成签到,获得积分10
12秒前
习习应助孔雀翎采纳,获得10
13秒前
liu完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672