Incorporation of intra-city human mobility into urban growth simulation: A case study in Beijing

北京 城市化 城市规划 背景(考古学) 特大城市 经济地理学 杠杆(统计) 计算机科学 城市密度 地理 运输工程 区域科学 中国 经济增长 土木工程 经济 经济 人工智能 考古 工程类
作者
Siying Wang,Fei Teng,Weifeng Li,Anqi Zhang,Huagui Guo,Yunyan Du
出处
期刊:Journal of Geographical Sciences [Springer Nature]
卷期号:32 (5): 892-912 被引量:8
标识
DOI:10.1007/s11442-022-1977-6
摘要

The effective modeling of urban growth is crucial for urban planning and analyzing the causes of land-use dynamics. As urbanization has slowed down in most megacities, improved urban growth modeling with minor changes has become a crucial open issue for these cities. Most existing models are based on stationary factors and spatial proximity, which are unlikely to depict spatial connectivity between regions. This research attempts to leverage the power of real-world human mobility and consider intra-city spatial interaction as an imperative driver in the context of urban growth simulation. Specifically, the gravity model, which considers both the scale and distance effects of geographical locations within cities, is employed to characterize the connection between land areas using individual trajectory data from a macro perspective. It then becomes possible to integrate human mobility factors into a neural-network-based cellular automata (ANN-CA) for urban growth modeling in Beijing from 2013 to 2016. The results indicate that the proposed model outperforms traditional models in terms of the overall accuracy with a 0.60% improvement in Cohen's Kappa coefficient and a 0.41% improvement in the figure of merit. In addition, the improvements are even more significant in districts with strong relationships with the central area of Beijing. For example, we find that the Kappa coefficients in three districts (Chaoyang, Daxing, and Shunyi) are considerably higher by more than 2.00%, suggesting the possible existence of a positive link between intense human interaction and urban growth. This paper provides valuable insights into how fine-grained human mobility data can be integrated into urban growth simulation, helping us to better understand the human-land relationship.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助科研通管家采纳,获得10
刚刚
哆啦十七应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
lqh0211发布了新的文献求助20
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
happyAlice应助科研通管家采纳,获得20
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
激昂的海蓝完成签到,获得积分10
1秒前
生动书竹发布了新的文献求助10
1秒前
GXY完成签到,获得积分10
3秒前
Mondrian完成签到,获得积分10
3秒前
3秒前
万能图书馆应助王十七采纳,获得10
3秒前
marker_发布了新的文献求助10
3秒前
烟花应助111111采纳,获得10
3秒前
3秒前
4秒前
5秒前
务实发夹完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
晴小阳发布了新的文献求助10
7秒前
黄海发布了新的文献求助10
7秒前
彭于晏应助和谐的凌香采纳,获得10
8秒前
8秒前
10秒前
顺利应助Heaven采纳,获得30
10秒前
贾硕士完成签到,获得积分10
11秒前
11秒前
星辰大海应助桃子采纳,获得30
11秒前
LaTeXer重新开启了zxb文献应助
11秒前
qiandaij发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352218
求助须知:如何正确求助?哪些是违规求助? 4485082
关于积分的说明 13961728
捐赠科研通 4384899
什么是DOI,文献DOI怎么找? 2409213
邀请新用户注册赠送积分活动 1401676
关于科研通互助平台的介绍 1375225