Incorporation of intra-city human mobility into urban growth simulation: A case study in Beijing

北京 城市化 城市规划 背景(考古学) 特大城市 经济地理学 杠杆(统计) 计算机科学 城市密度 地理 运输工程 区域科学 中国 经济增长 土木工程 经济 经济 人工智能 考古 工程类
作者
Siying Wang,Fei Teng,Weifeng Li,Anqi Zhang,Huagui Guo,Yunyan Du
出处
期刊:Journal of Geographical Sciences [Springer Nature]
卷期号:32 (5): 892-912 被引量:8
标识
DOI:10.1007/s11442-022-1977-6
摘要

The effective modeling of urban growth is crucial for urban planning and analyzing the causes of land-use dynamics. As urbanization has slowed down in most megacities, improved urban growth modeling with minor changes has become a crucial open issue for these cities. Most existing models are based on stationary factors and spatial proximity, which are unlikely to depict spatial connectivity between regions. This research attempts to leverage the power of real-world human mobility and consider intra-city spatial interaction as an imperative driver in the context of urban growth simulation. Specifically, the gravity model, which considers both the scale and distance effects of geographical locations within cities, is employed to characterize the connection between land areas using individual trajectory data from a macro perspective. It then becomes possible to integrate human mobility factors into a neural-network-based cellular automata (ANN-CA) for urban growth modeling in Beijing from 2013 to 2016. The results indicate that the proposed model outperforms traditional models in terms of the overall accuracy with a 0.60% improvement in Cohen's Kappa coefficient and a 0.41% improvement in the figure of merit. In addition, the improvements are even more significant in districts with strong relationships with the central area of Beijing. For example, we find that the Kappa coefficients in three districts (Chaoyang, Daxing, and Shunyi) are considerably higher by more than 2.00%, suggesting the possible existence of a positive link between intense human interaction and urban growth. This paper provides valuable insights into how fine-grained human mobility data can be integrated into urban growth simulation, helping us to better understand the human-land relationship.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
orixero应助牛奶牛奶采纳,获得10
刚刚
songf11发布了新的文献求助10
刚刚
1秒前
1秒前
grande完成签到,获得积分10
1秒前
CR7完成签到,获得积分10
1秒前
迷人雪碧发布了新的文献求助10
1秒前
欧阳晨宇完成签到,获得积分10
2秒前
seven发布了新的文献求助10
3秒前
kiko发布了新的文献求助10
3秒前
撒野完成签到,获得积分20
3秒前
忧郁紫翠发布了新的文献求助10
3秒前
香蕉觅云应助公孙世往采纳,获得10
3秒前
Ryan_Lau完成签到 ,获得积分10
3秒前
4秒前
艾斯完成签到,获得积分10
4秒前
筱悠完成签到 ,获得积分10
4秒前
GGbound完成签到 ,获得积分10
4秒前
清秀语风完成签到,获得积分10
4秒前
uuu完成签到,获得积分10
4秒前
6秒前
CR7发布了新的文献求助10
6秒前
菩提树下发布了新的文献求助10
6秒前
123完成签到,获得积分10
7秒前
WangYZ发布了新的文献求助30
7秒前
情怀应助火星上的莹采纳,获得10
7秒前
Lyubb完成签到,获得积分10
9秒前
qq发布了新的文献求助10
9秒前
健忘道罡完成签到 ,获得积分10
10秒前
退堂鼓发布了新的文献求助10
10秒前
完美世界应助梦清雅采纳,获得10
10秒前
10秒前
10秒前
11秒前
Emma发布了新的文献求助10
11秒前
俊逸的惜寒关注了科研通微信公众号
12秒前
heiyi完成签到,获得积分10
12秒前
Lee完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647059
求助须知:如何正确求助?哪些是违规求助? 4772926
关于积分的说明 15037602
捐赠科研通 4805794
什么是DOI,文献DOI怎么找? 2569989
邀请新用户注册赠送积分活动 1526857
关于科研通互助平台的介绍 1485983