Incorporation of intra-city human mobility into urban growth simulation: A case study in Beijing

北京 城市化 城市规划 背景(考古学) 特大城市 经济地理学 杠杆(统计) 计算机科学 城市密度 地理 运输工程 区域科学 中国 经济增长 土木工程 经济 经济 人工智能 考古 工程类
作者
Siying Wang,Fei Teng,Weifeng Li,Anqi Zhang,Huagui Guo,Yunyan Du
出处
期刊:Journal of Geographical Sciences [Springer Nature]
卷期号:32 (5): 892-912 被引量:8
标识
DOI:10.1007/s11442-022-1977-6
摘要

The effective modeling of urban growth is crucial for urban planning and analyzing the causes of land-use dynamics. As urbanization has slowed down in most megacities, improved urban growth modeling with minor changes has become a crucial open issue for these cities. Most existing models are based on stationary factors and spatial proximity, which are unlikely to depict spatial connectivity between regions. This research attempts to leverage the power of real-world human mobility and consider intra-city spatial interaction as an imperative driver in the context of urban growth simulation. Specifically, the gravity model, which considers both the scale and distance effects of geographical locations within cities, is employed to characterize the connection between land areas using individual trajectory data from a macro perspective. It then becomes possible to integrate human mobility factors into a neural-network-based cellular automata (ANN-CA) for urban growth modeling in Beijing from 2013 to 2016. The results indicate that the proposed model outperforms traditional models in terms of the overall accuracy with a 0.60% improvement in Cohen's Kappa coefficient and a 0.41% improvement in the figure of merit. In addition, the improvements are even more significant in districts with strong relationships with the central area of Beijing. For example, we find that the Kappa coefficients in three districts (Chaoyang, Daxing, and Shunyi) are considerably higher by more than 2.00%, suggesting the possible existence of a positive link between intense human interaction and urban growth. This paper provides valuable insights into how fine-grained human mobility data can be integrated into urban growth simulation, helping us to better understand the human-land relationship.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
掌上三寸发布了新的文献求助10
1秒前
2秒前
3秒前
勤奋的刺猬完成签到,获得积分10
3秒前
xiaoqianqian174完成签到,获得积分10
4秒前
包凡之发布了新的文献求助10
4秒前
5秒前
d董完成签到,获得积分10
6秒前
7秒前
Orange应助luoluo采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
JamesYang发布了新的文献求助10
9秒前
欧哈纳发布了新的文献求助10
9秒前
orixero应助diplomat采纳,获得10
10秒前
10秒前
希望天下0贩的0应助南北采纳,获得10
11秒前
13秒前
Ellalala发布了新的文献求助10
13秒前
汉堡包应助sunhealth采纳,获得10
14秒前
JamesPei应助JamesYang采纳,获得10
15秒前
15秒前
星辰大海应助科研通管家采纳,获得10
15秒前
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
15秒前
orixero应助科研通管家采纳,获得10
15秒前
CipherSage应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
orixero应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
烟花应助科研通管家采纳,获得30
16秒前
李爱国应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729141
求助须知:如何正确求助?哪些是违规求助? 5316369
关于积分的说明 15315857
捐赠科研通 4876150
什么是DOI,文献DOI怎么找? 2619263
邀请新用户注册赠送积分活动 1568820
关于科研通互助平台的介绍 1525317