Incorporation of intra-city human mobility into urban growth simulation: A case study in Beijing

北京 城市化 城市规划 背景(考古学) 特大城市 经济地理学 杠杆(统计) 计算机科学 城市密度 地理 运输工程 区域科学 中国 经济增长 土木工程 经济 经济 人工智能 考古 工程类
作者
Siying Wang,Fei Teng,Weifeng Li,Anqi Zhang,Huagui Guo,Yunyan Du
出处
期刊:Journal of Geographical Sciences [Springer Nature]
卷期号:32 (5): 892-912 被引量:8
标识
DOI:10.1007/s11442-022-1977-6
摘要

The effective modeling of urban growth is crucial for urban planning and analyzing the causes of land-use dynamics. As urbanization has slowed down in most megacities, improved urban growth modeling with minor changes has become a crucial open issue for these cities. Most existing models are based on stationary factors and spatial proximity, which are unlikely to depict spatial connectivity between regions. This research attempts to leverage the power of real-world human mobility and consider intra-city spatial interaction as an imperative driver in the context of urban growth simulation. Specifically, the gravity model, which considers both the scale and distance effects of geographical locations within cities, is employed to characterize the connection between land areas using individual trajectory data from a macro perspective. It then becomes possible to integrate human mobility factors into a neural-network-based cellular automata (ANN-CA) for urban growth modeling in Beijing from 2013 to 2016. The results indicate that the proposed model outperforms traditional models in terms of the overall accuracy with a 0.60% improvement in Cohen's Kappa coefficient and a 0.41% improvement in the figure of merit. In addition, the improvements are even more significant in districts with strong relationships with the central area of Beijing. For example, we find that the Kappa coefficients in three districts (Chaoyang, Daxing, and Shunyi) are considerably higher by more than 2.00%, suggesting the possible existence of a positive link between intense human interaction and urban growth. This paper provides valuable insights into how fine-grained human mobility data can be integrated into urban growth simulation, helping us to better understand the human-land relationship.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
正直的大树完成签到,获得积分10
1秒前
呼说完成签到,获得积分10
2秒前
充电宝应助清蒸可达鸭采纳,获得10
3秒前
刘大宝发布了新的文献求助30
3秒前
冷艳的妙竹完成签到,获得积分10
5秒前
5秒前
5秒前
田tian发布了新的文献求助10
6秒前
哩蒜呐完成签到,获得积分10
6秒前
orixero应助科研小白采纳,获得10
7秒前
8秒前
8秒前
8秒前
不配.应助壮观的大山采纳,获得10
8秒前
不配.应助壮观的大山采纳,获得10
8秒前
8秒前
xjy完成签到,获得积分10
9秒前
9秒前
萧水白应助莹仔采纳,获得10
9秒前
9秒前
1004完成签到,获得积分10
10秒前
完美世界应助玥来玥好采纳,获得10
10秒前
木子李发布了新的文献求助10
10秒前
Jonas完成签到,获得积分10
10秒前
11秒前
11秒前
情怀应助焱冰采纳,获得10
11秒前
litianyi完成签到,获得积分10
11秒前
刘大宝完成签到,获得积分10
12秒前
人人夸我美食家完成签到,获得积分20
12秒前
自信眼睛发布了新的文献求助10
13秒前
积极向上发布了新的文献求助10
13秒前
天天飞人发布了新的文献求助10
14秒前
易安完成签到,获得积分10
15秒前
尊敬秋双完成签到 ,获得积分10
15秒前
落花生发布了新的文献求助10
15秒前
花意沉完成签到,获得积分10
15秒前
16秒前
16秒前
丁爽发布了新的文献求助10
16秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3227802
求助须知:如何正确求助?哪些是违规求助? 2875741
关于积分的说明 8192365
捐赠科研通 2542879
什么是DOI,文献DOI怎么找? 1373241
科研通“疑难数据库(出版商)”最低求助积分说明 646713
邀请新用户注册赠送积分活动 621181