Incorporation of intra-city human mobility into urban growth simulation: A case study in Beijing

北京 城市化 城市规划 背景(考古学) 特大城市 经济地理学 杠杆(统计) 计算机科学 城市密度 地理 运输工程 区域科学 中国 经济增长 土木工程 经济 经济 人工智能 考古 工程类
作者
Siying Wang,Fei Teng,Weifeng Li,Anqi Zhang,Huagui Guo,Yunyan Du
出处
期刊:Journal of Geographical Sciences [Springer Nature]
卷期号:32 (5): 892-912 被引量:8
标识
DOI:10.1007/s11442-022-1977-6
摘要

The effective modeling of urban growth is crucial for urban planning and analyzing the causes of land-use dynamics. As urbanization has slowed down in most megacities, improved urban growth modeling with minor changes has become a crucial open issue for these cities. Most existing models are based on stationary factors and spatial proximity, which are unlikely to depict spatial connectivity between regions. This research attempts to leverage the power of real-world human mobility and consider intra-city spatial interaction as an imperative driver in the context of urban growth simulation. Specifically, the gravity model, which considers both the scale and distance effects of geographical locations within cities, is employed to characterize the connection between land areas using individual trajectory data from a macro perspective. It then becomes possible to integrate human mobility factors into a neural-network-based cellular automata (ANN-CA) for urban growth modeling in Beijing from 2013 to 2016. The results indicate that the proposed model outperforms traditional models in terms of the overall accuracy with a 0.60% improvement in Cohen's Kappa coefficient and a 0.41% improvement in the figure of merit. In addition, the improvements are even more significant in districts with strong relationships with the central area of Beijing. For example, we find that the Kappa coefficients in three districts (Chaoyang, Daxing, and Shunyi) are considerably higher by more than 2.00%, suggesting the possible existence of a positive link between intense human interaction and urban growth. This paper provides valuable insights into how fine-grained human mobility data can be integrated into urban growth simulation, helping us to better understand the human-land relationship.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小田发布了新的文献求助20
刚刚
1秒前
1秒前
灵巧映安发布了新的文献求助10
2秒前
2秒前
超级小飞侠完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
踏实威完成签到,获得积分10
3秒前
SciGPT应助zzaxx123采纳,获得10
4秒前
弄香发布了新的文献求助10
6秒前
欣慰的白羊完成签到,获得积分10
7秒前
fanhongpeng完成签到 ,获得积分10
7秒前
7秒前
8秒前
ermiao发布了新的文献求助10
8秒前
小李子完成签到,获得积分10
10秒前
JamesPei应助曙丽盼采纳,获得10
11秒前
无极微光应助隐形的若灵采纳,获得20
11秒前
打打应助种花家的狗狗采纳,获得10
11秒前
善学以致用应助TingtingGZ采纳,获得10
11秒前
Stroeve完成签到,获得积分10
12秒前
lzylzy完成签到,获得积分10
12秒前
13秒前
13秒前
zh完成签到,获得积分10
15秒前
lzylzy发布了新的文献求助10
16秒前
17秒前
李顺利给李顺利的求助进行了留言
18秒前
18秒前
18秒前
19秒前
19秒前
20秒前
20秒前
21秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
yanghj完成签到,获得积分20
23秒前
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526942
求助须知:如何正确求助?哪些是违规求助? 4616873
关于积分的说明 14556205
捐赠科研通 4555440
什么是DOI,文献DOI怎么找? 2496353
邀请新用户注册赠送积分活动 1476654
关于科研通互助平台的介绍 1448212