Incorporation of intra-city human mobility into urban growth simulation: A case study in Beijing

北京 城市化 城市规划 背景(考古学) 特大城市 经济地理学 杠杆(统计) 计算机科学 城市密度 地理 运输工程 区域科学 中国 经济增长 土木工程 经济 经济 人工智能 考古 工程类
作者
Siying Wang,Fei Teng,Weifeng Li,Anqi Zhang,Huagui Guo,Yunyan Du
出处
期刊:Journal of Geographical Sciences [Springer Nature]
卷期号:32 (5): 892-912 被引量:8
标识
DOI:10.1007/s11442-022-1977-6
摘要

The effective modeling of urban growth is crucial for urban planning and analyzing the causes of land-use dynamics. As urbanization has slowed down in most megacities, improved urban growth modeling with minor changes has become a crucial open issue for these cities. Most existing models are based on stationary factors and spatial proximity, which are unlikely to depict spatial connectivity between regions. This research attempts to leverage the power of real-world human mobility and consider intra-city spatial interaction as an imperative driver in the context of urban growth simulation. Specifically, the gravity model, which considers both the scale and distance effects of geographical locations within cities, is employed to characterize the connection between land areas using individual trajectory data from a macro perspective. It then becomes possible to integrate human mobility factors into a neural-network-based cellular automata (ANN-CA) for urban growth modeling in Beijing from 2013 to 2016. The results indicate that the proposed model outperforms traditional models in terms of the overall accuracy with a 0.60% improvement in Cohen's Kappa coefficient and a 0.41% improvement in the figure of merit. In addition, the improvements are even more significant in districts with strong relationships with the central area of Beijing. For example, we find that the Kappa coefficients in three districts (Chaoyang, Daxing, and Shunyi) are considerably higher by more than 2.00%, suggesting the possible existence of a positive link between intense human interaction and urban growth. This paper provides valuable insights into how fine-grained human mobility data can be integrated into urban growth simulation, helping us to better understand the human-land relationship.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣慰元龙发布了新的文献求助10
刚刚
刚刚
有机发布了新的文献求助10
刚刚
刚刚
zgrmws应助清浅采纳,获得10
1秒前
科研通AI6应助WNL采纳,获得10
1秒前
2秒前
搜集达人应助morry5007采纳,获得10
2秒前
幸福的蓝血完成签到,获得积分10
3秒前
香蕉觅云应助cxl采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
6666发布了新的文献求助10
5秒前
Stella完成签到,获得积分0
5秒前
充电宝应助zpctx采纳,获得10
5秒前
灯灯发布了新的文献求助10
6秒前
秋天的雪发布了新的文献求助10
6秒前
syqlyd完成签到 ,获得积分10
7秒前
科研通AI2S应助zzznznnn采纳,获得10
8秒前
slm完成签到,获得积分10
8秒前
自觉士萧发布了新的文献求助10
9秒前
如意蓉完成签到,获得积分10
10秒前
11秒前
好运6连发布了新的文献求助10
11秒前
11秒前
12秒前
Cathy17sl完成签到,获得积分10
12秒前
zpctx完成签到,获得积分10
13秒前
大模型应助自觉士萧采纳,获得10
13秒前
陈新发布了新的文献求助10
15秒前
FashionBoy应助刘凯采纳,获得10
15秒前
幸福白安完成签到,获得积分20
15秒前
舒适砖家发布了新的文献求助10
15秒前
111发布了新的文献求助10
16秒前
fairy完成签到 ,获得积分10
16秒前
俊逸成危完成签到,获得积分10
16秒前
WNL发布了新的文献求助30
17秒前
zpctx发布了新的文献求助10
17秒前
陶嘉云完成签到,获得积分10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608203
求助须知:如何正确求助?哪些是违规求助? 4692781
关于积分的说明 14875613
捐赠科研通 4716881
什么是DOI,文献DOI怎么找? 2544093
邀请新用户注册赠送积分活动 1509086
关于科研通互助平台的介绍 1472795