🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情

Vision Transformer for femur fracture classification

人工智能 卷积神经网络 计算机科学 深度学习 计算机辅助设计 机器学习 变压器 模式识别(心理学) 工程类 电气工程 电压 工程制图
作者
Leonardo Tanzi,Andrea Audisio,Giansalvo Cirrincione,Alessandro Aprato,Enrico Vezzetti
出处
期刊:Injury-international Journal of The Care of The Injured [Elsevier]
卷期号:53 (7): 2625-2634 被引量:60
标识
DOI:10.1016/j.injury.2022.04.013
摘要

In recent years, the scientific community focused on developing Computer-Aided Diagnosis (CAD) tools that could improve clinicians' bone fractures diagnosis, primarily based on Convolutional Neural Networks (CNNs). However, the discerning accuracy of fractures' subtypes was far from optimal. The aim of the study was 1) to evaluate a new CAD system based on Vision Transformers (ViT), a very recent and powerful deep learning technique, and 2) to assess whether clinicians' diagnostic accuracy could be improved using this system.4207 manually annotated images were used and distributed, by following the AO/OTA classification, in different fracture types. The ViT architecture was used and compared with a classic CNN and a multistage architecture composed of successive CNNs. To demonstrate the reliability of this approach, (1) the attention maps were used to visualize the most relevant areas of the images, (2) the performance of a generic CNN and ViT was compared through unsupervised learning techniques, and (3) 11 clinicians were asked to evaluate and classify 150 proximal femur fractures' images with and without the help of the ViT, then results were compared for potential improvement.The ViT was able to predict 83% of the test images correctly. Precision, recall and F1-score were 0.77 (CI 0.64-0.90), 0.76 (CI 0.62-0.91) and 0.77 (CI 0.64-0.89), respectively. The clinicians' diagnostic improvement was 29% (accuracy 97%; p 0.003) when supported by ViT's predictions, outperforming the algorithm alone.This paper showed the potential of Vision Transformers in bone fracture classification. For the first time, good results were obtained in sub-fractures classification, outperforming the state of the art. Accordingly, the assisted diagnosis yielded the best results, proving the effectiveness of collaborative work between neural networks and clinicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
harry2021完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
3秒前
Lucas应助Glorious采纳,获得10
3秒前
4秒前
飞的更高完成签到,获得积分10
4秒前
5秒前
芋头芋头大芋头完成签到 ,获得积分10
5秒前
小透明应助皮凡采纳,获得40
6秒前
cxxxxx完成签到,获得积分10
6秒前
6秒前
传奇3应助狂野悟空采纳,获得10
6秒前
可爱的函函应助wbz12345采纳,获得10
7秒前
大模型应助东方天奇采纳,获得10
8秒前
个性醉波发布了新的文献求助10
8秒前
知犯何逆发布了新的文献求助20
9秒前
北挽完成签到 ,获得积分10
9秒前
顺利的若灵完成签到,获得积分10
11秒前
12秒前
li完成签到,获得积分10
12秒前
12秒前
Frozen发布了新的文献求助10
12秒前
14秒前
15秒前
16秒前
16秒前
白小余完成签到,获得积分10
17秒前
shiyi完成签到 ,获得积分10
17秒前
个性醉波发布了新的文献求助30
17秒前
东方天奇完成签到,获得积分10
18秒前
liyanping发布了新的文献求助10
18秒前
可靠夜绿发布了新的文献求助10
18秒前
没有昵称发布了新的文献求助10
18秒前
20秒前
21秒前
21秒前
21秒前
东方天奇发布了新的文献求助10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
Generative Machine Learning Models in Medical Image Computing 590
Barth, Derrida and the Language of Theology 500
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3600008
求助须知:如何正确求助?哪些是违规求助? 3168702
关于积分的说明 9559090
捐赠科研通 2875140
什么是DOI,文献DOI怎么找? 1578599
邀请新用户注册赠送积分活动 742208
科研通“疑难数据库(出版商)”最低求助积分说明 725097