已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Curvature Consistent Network for Microscope Chip Image Super-Resolution

计算机科学 曲率 显微镜 工作流程 杠杆(统计) 人工智能 光学 物理 数学 几何学 数据库
作者
Mingjin Zhang,Jingwei Xin,Jing Zhang,Dacheng Tao,Xinbo Gao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (12): 10538-10551 被引量:18
标识
DOI:10.1109/tnnls.2022.3168540
摘要

Detecting hardware Trojan (HT) from a microscope chip image (MCI) is crucial for many applications, such as financial infrastructure and transport security. It takes an inordinate cost in scanning high-resolution (HR) microscope images for HT detection. It is useful when the chip image is in low-resolution (LR), which can be acquired faster and at a lower cost than its HR counterpart. However, the lost details and noises due to the electric charge effect in LR MCIs will affect the detection performance, making the problem more challenging. In this article, we address this issue by first discussing why recovering curvature information matters for HT detection and then proposing a novel MCI super-resolution (SR) method via a curvature consistent network (CCN). It consists of a homogeneous workflow and a heterogeneous workflow, where the former learns a mapping between homogeneous images, i.e., LR and HR MCIs, and the latter learns a mapping between heterogeneous images, i.e., MCIs and curvature images. Besides, a collaborative fusion strategy is used to leverage features learned from both workflows level-by-level by recovering the HR image eventually. To mitigate the issue of lacking an MCI dataset, we construct a new benchmark consisting of realistic MCIs at different resolutions, called MCI. Experiments on MCI demonstrate that the proposed CCN outperforms representative SR methods by recovering more delicate circuit lines and yields higher HT detection performance. The dataset is available at github.com/RuiZhang97/CCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白白完成签到 ,获得积分10
2秒前
东风发布了新的文献求助10
3秒前
zqqq完成签到 ,获得积分10
3秒前
3秒前
5秒前
祝笑柳完成签到,获得积分10
5秒前
KDS发布了新的文献求助10
6秒前
carpybala完成签到,获得积分10
6秒前
check003完成签到,获得积分10
7秒前
hihihi发布了新的文献求助10
8秒前
小巧谷波应助zouxuan采纳,获得10
8秒前
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
FIN应助科研通管家采纳,获得10
9秒前
10秒前
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
蓝枫发布了新的文献求助10
12秒前
楠楠小猪完成签到,获得积分10
15秒前
小绵羊发布了新的文献求助10
17秒前
凶狠的寄风完成签到 ,获得积分10
20秒前
21秒前
www完成签到,获得积分10
22秒前
依依发布了新的文献求助10
23秒前
洪星完成签到,获得积分10
25秒前
www发布了新的文献求助10
25秒前
共享精神应助zouxuan采纳,获得10
27秒前
舒心谷雪完成签到 ,获得积分10
27秒前
Rn完成签到 ,获得积分10
28秒前
luo完成签到 ,获得积分10
31秒前
东风发布了新的文献求助10
31秒前
hihihi完成签到,获得积分10
31秒前
33秒前
蓝枫完成签到,获得积分20
34秒前
青山完成签到 ,获得积分10
36秒前
李健的小迷弟应助独木舟采纳,获得10
38秒前
量子星尘发布了新的文献求助10
38秒前
39秒前
天天天晴完成签到,获得积分10
40秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956943
求助须知:如何正确求助?哪些是违规求助? 3503011
关于积分的说明 11110935
捐赠科研通 3234007
什么是DOI,文献DOI怎么找? 1787694
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802234