Constructing hotspots through star-shaped gold-copper alloy nanocrystals for laser initiation of explosives

材料科学 激光器 合金 纳米晶 爆炸物 光电子学 紫外线 激光功率缩放 光学 纳米技术 复合材料 冶金 化学 物理 有机化学
作者
Wencai Bai,Liang Wang,Duo Tang,Fan Yang,Zhiqiang Qiao,Dan Lin,Rong He,Wenkun Zhu,Wenzhi Qin
出处
期刊:Optics and Laser Technology [Elsevier]
卷期号:152: 108120-108120 被引量:9
标识
DOI:10.1016/j.optlastec.2022.108120
摘要

Laser initiation technology is an effective way to detonate high energy materials safely and reliably, which has broad application prospect in military blasting. However, there are many obstacles in high-power laser propagating through optical fiber, which directly affect the initiation of high-energy explosives under low-power conditions. Photosensitizer is a necessary substance for initiating low energy and low sensitivity explosives. Herein we developed gold-copper alloys nanocrystals as free-standing laser energy converter material to reduce the laser initiation threshold and delay time. By controlling the nanocrystals morphology, more hotspots were created in the nanocrystals and the ultraviolet–visible-near infrared (UV–VIS-NIR) absorption peak of nanocrystals was regulated to around 808 nm. The laser irradiation result showed that the temperature of the gold-copper alloys nanocrystals was close to 280 ℃ within 10 s (808 nm, 1 W·cm−2). In the practical applications, the cyclotrimethy lenetrinitramine (RDX) initiation threshold can be reduced by 83.47% and B/KNO3 delay time by 43.95% by using gold-copper alloy nanocrystals as laser energy absorber. This result indicates that the gold-copper alloy as an independent laser absorbing material can effectively initiate low-sensitive explosives under low-power conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mwen完成签到,获得积分10
刚刚
我是老大应助无限青柏采纳,获得10
2秒前
无极微光应助Thorns采纳,获得20
2秒前
在水一方应助YE采纳,获得10
3秒前
3秒前
3秒前
矜持发布了新的文献求助10
4秒前
Doctor_Peng完成签到,获得积分10
4秒前
煤炭不甜发布了新的文献求助10
4秒前
5秒前
华仔应助明天会更好采纳,获得10
5秒前
顺利的琳发布了新的文献求助10
6秒前
7秒前
7秒前
nuonuoweng完成签到,获得积分10
7秒前
BOMB发布了新的文献求助30
8秒前
苗条世德完成签到,获得积分10
8秒前
8秒前
8秒前
Maize Man完成签到,获得积分10
8秒前
单纯寒凝发布了新的文献求助10
10秒前
10秒前
Ava应助称心凡霜采纳,获得10
11秒前
快乐小瑶发布了新的文献求助10
11秒前
11秒前
英俊的铭应助sxmt123456789采纳,获得30
12秒前
搜集达人应助伶俐的夜梦采纳,获得50
12秒前
煤炭不甜完成签到,获得积分10
12秒前
14秒前
万能图书馆应助矜持采纳,获得10
14秒前
kekehuang关注了科研通微信公众号
14秒前
14秒前
霸气若男发布了新的文献求助10
15秒前
孙嘉畯发布了新的文献求助10
15秒前
lbchanger完成签到 ,获得积分10
15秒前
Lisianthus发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
16秒前
YE完成签到 ,获得积分10
16秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610713
求助须知:如何正确求助?哪些是违规求助? 4695216
关于积分的说明 14885929
捐赠科研通 4723170
什么是DOI,文献DOI怎么找? 2545217
邀请新用户注册赠送积分活动 1509998
关于科研通互助平台的介绍 1473110