An efficient approach for optimizing the cost-effective individualized treatment rule using conditional random forest

随机森林 计算机科学 机器学习
作者
Yizhe Xu,Tom Greene,Adam P. Bress,Brandon K. Bellows,Yue Zhang,Zugui Zhang,Paul Kolm,William Weintraub,Andrew S. Moran,Jincheng Shen
出处
期刊:Statistical Methods in Medical Research [SAGE]
卷期号:31 (11): 2122-2136 被引量:3
标识
DOI:10.1177/09622802221115876
摘要

Evidence from observational studies has become increasingly important for supporting healthcare policy making via cost-effectiveness analyses. Similar as in comparative effectiveness studies, health economic evaluations that consider subject-level heterogeneity produce individualized treatment rules that are often more cost-effective than one-size-fits-all treatment. Thus, it is of great interest to develop statistical tools for learning such a cost-effective individualized treatment rule under the causal inference framework that allows proper handling of potential confounding and can be applied to both trials and observational studies. In this paper, we use the concept of net-monetary-benefit to assess the trade-off between health benefits and related costs. We estimate cost-effective individualized treatment rule as a function of patients’ characteristics that, when implemented, optimizes the allocation of limited healthcare resources by maximizing health gains while minimizing treatment-related costs. We employ the conditional random forest approach and identify the optimal cost-effective individualized treatment rule using net-monetary-benefit-based classification algorithms, where two partitioned estimators are proposed for the subject-specific weights to effectively incorporate information from censored individuals. We conduct simulation studies to evaluate the performance of our proposals. We apply our top-performing algorithm to the NIH-funded Systolic Blood Pressure Intervention Trial to illustrate the cost-effectiveness gains of assigning customized intensive blood pressure therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sjh完成签到,获得积分10
1秒前
lilioa85完成签到,获得积分10
1秒前
1秒前
yyy完成签到,获得积分10
2秒前
NexusExplorer应助wwww采纳,获得10
2秒前
2秒前
2秒前
Simplefy发布了新的文献求助10
2秒前
老实续发布了新的文献求助10
3秒前
3秒前
xuan完成签到,获得积分10
4秒前
英俊牛排完成签到,获得积分10
4秒前
5秒前
温酒随行发布了新的文献求助10
5秒前
赤兔发布了新的文献求助10
5秒前
沉默的云朵完成签到,获得积分10
5秒前
小马甲应助珍惜采纳,获得10
5秒前
好困发布了新的文献求助10
6秒前
Nyxia发布了新的文献求助10
6秒前
7秒前
白秋雪完成签到,获得积分10
7秒前
8秒前
Jally发布了新的文献求助10
8秒前
8秒前
可乐完成签到,获得积分20
8秒前
跳跃凡桃发布了新的文献求助10
9秒前
9秒前
芒晨牧微完成签到,获得积分10
9秒前
小雨发布了新的文献求助10
10秒前
蛰伏的小宇宙完成签到,获得积分10
10秒前
呦呦呵呵完成签到,获得积分10
10秒前
苻涵菡完成签到,获得积分10
10秒前
11秒前
SS1988发布了新的文献求助10
11秒前
12秒前
12秒前
靳晗聪123关注了科研通微信公众号
13秒前
Xx完成签到,获得积分10
13秒前
wwww发布了新的文献求助10
13秒前
mumufan完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246