Noninvasive Diagnosis of Nonalcoholic Steatohepatitis and Advanced Liver Fibrosis Using Machine Learning Methods: Comparative Study With Existing Quantitative Risk Scores

非酒精性脂肪肝 肝硬化 医学 内科学 脂肪变性 肝活检 纤维化 脂肪性肝炎 肝细胞癌 丙氨酸转氨酶 脂肪肝 胃肠病学 机器学习 活检 算法 人工智能 计算机科学 疾病
作者
Yonghui Wu,Xi Yang,Heather Morris,Matthew J. Gurka,Elizabeth Shenkman,Kenneth Cusi,Fernando Bril,William T. Donahoo
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:10 (6): e36997-e36997 被引量:5
标识
DOI:10.2196/36997
摘要

Nonalcoholic steatohepatitis (NASH), advanced fibrosis, and subsequent cirrhosis and hepatocellular carcinoma are becoming the most common etiology for liver failure and liver transplantation; however, they can only be diagnosed at these potentially reversible stages with a liver biopsy, which is associated with various complications and high expenses. Knowing the difference between the more benign isolated steatosis and the more severe NASH and cirrhosis informs the physician regarding the need for more aggressive management.We intend to explore the feasibility of using machine learning methods for noninvasive diagnosis of NASH and advanced liver fibrosis and compare machine learning methods with existing quantitative risk scores.We conducted a retrospective analysis of clinical data from a cohort of 492 patients with biopsy-proven nonalcoholic fatty liver disease (NAFLD), NASH, or advanced fibrosis. We systematically compared 5 widely used machine learning algorithms for the prediction of NAFLD, NASH, and fibrosis using 2 variable encoding strategies. Then, we compared the machine learning methods with 3 existing quantitative scores and identified the important features for prediction using the SHapley Additive exPlanations method.The best machine learning method, gradient boosting (GB), achieved the best area under the curve scores of 0.9043, 0.8166, and 0.8360 for NAFLD, NASH, and advanced fibrosis, respectively. GB also outperformed 3 existing risk scores for fibrosis. Among the variables, alanine aminotransferase (ALT), triglyceride (TG), and BMI were the important risk factors for the prediction of NAFLD, whereas aspartate transaminase (AST), ALT, and TG were the important variables for the prediction of NASH, and AST, hyperglycemia (A1c), and high-density lipoprotein were the important variables for predicting advanced fibrosis.It is feasible to use machine learning methods for predicting NAFLD, NASH, and advanced fibrosis using routine clinical data, which potentially can be used to better identify patients who still need liver biopsy. Additionally, understanding the relative importance and differences in predictors could lead to improved understanding of the disease process as well as support for identifying novel treatment options.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
杳鸢应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得30
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
argon完成签到,获得积分10
4秒前
萨特完成签到,获得积分10
4秒前
四角水发布了新的文献求助10
7秒前
阔达的太阳完成签到,获得积分10
10秒前
务实的又柔完成签到,获得积分10
10秒前
Bressanone发布了新的文献求助10
11秒前
12秒前
nickel完成签到,获得积分10
15秒前
20秒前
丁仪完成签到,获得积分10
20秒前
搜集达人应助--采纳,获得10
21秒前
22秒前
NZH发布了新的文献求助20
23秒前
24秒前
wxx完成签到,获得积分10
25秒前
小火锅发布了新的文献求助10
26秒前
28秒前
28秒前
jj发布了新的文献求助10
30秒前
30秒前
orixero应助快乐的晓刚采纳,获得10
32秒前
33秒前
--发布了新的文献求助10
34秒前
NZH关闭了NZH文献求助
34秒前
36秒前
佳佳发布了新的文献求助10
36秒前
英姑应助jj采纳,获得10
38秒前
Renee应助Lion采纳,获得10
41秒前
完美世界应助陈隆采纳,获得10
42秒前
42秒前
xiaotianli完成签到,获得积分10
43秒前
45秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161014
求助须知:如何正确求助?哪些是违规求助? 2812392
关于积分的说明 7895364
捐赠科研通 2471232
什么是DOI,文献DOI怎么找? 1315908
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602094