Physics-Informed Neural Networks for Brain Hemodynamic Predictions Using Medical Imaging

医学影像学 血流动力学 人工神经网络 神经影像学 人工智能 计算机科学 医学物理学 物理 神经科学 医学 心理学 内科学
作者
Mohammad Sarabian,Hessam Babaee,Kaveh Laksari
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (9): 2285-2303 被引量:54
标识
DOI:10.1109/tmi.2022.3161653
摘要

Determining brain hemodynamics plays a critical role in the diagnosis and treatment of various cerebrovascular diseases. In this work, we put forth a physics-informed deep learning framework that augments sparse clinical measurements with one-dimensional (1D) reduced-order model (ROM) simulations to generate physically consistent brain hemodynamic parameters with high spatiotemporal resolution. Transcranial Doppler (TCD) ultrasound is one of the most common techniques in the current clinical workflow that enables noninvasive and instantaneous evaluation of blood flow velocity within the cerebral arteries. However, it is spatially limited to only a handful of locations across the cerebrovasculature due to the constrained accessibility through the skull's acoustic windows. Our deep learning framework uses in vivo real-time TCD velocity measurements at several locations in the brain combined with baseline vessel cross-sectional areas acquired from 3D angiography images and provides high-resolution maps of velocity, area, and pressure in the entire brain vasculature. We validate the predictions of our model against in vivo velocity measurements obtained via four-dimensional (4D) flow magnetic resonance imaging (MRI) scans. We then showcase the clinical significance of this technique in diagnosing cerebral vasospasm (CVS) by successfully predicting the changes in vasospastic local vessel diameters based on corresponding sparse velocity measurements. We show this capability by generating synthetic blood flow data after cerebral vasospasm at various levels of stenosis. Here, we demonstrate that the physics-based deep learning approach can estimate and quantify the subject-specific cerebral hemodynamic variables with high accuracy despite lacking knowledge of inlet and outlet boundary conditions, which is a significant limitation for the accuracy of the conventional purely physics-based computational models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111发布了新的文献求助10
1秒前
1秒前
烟花应助不安秋荷采纳,获得10
3秒前
海鲭发布了新的文献求助10
3秒前
鲤鱼青槐完成签到,获得积分10
4秒前
地SDF完成签到,获得积分10
4秒前
陈陈完成签到,获得积分10
4秒前
4秒前
5秒前
zhenliu完成签到 ,获得积分10
5秒前
6秒前
zyf发布了新的文献求助10
9秒前
一一应助1111采纳,获得20
9秒前
爆米花应助科研通管家采纳,获得10
10秒前
julia应助科研通管家采纳,获得10
10秒前
11秒前
xx应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
11秒前
Zyk完成签到,获得积分10
11秒前
五花肉应助科研通管家采纳,获得20
11秒前
11秒前
11秒前
爆米花应助科研通管家采纳,获得10
12秒前
安详的灰狼完成签到 ,获得积分10
12秒前
叁川发布了新的文献求助10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
今后应助科研通管家采纳,获得10
12秒前
12秒前
wanci应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
linnn完成签到,获得积分10
13秒前
14秒前
14秒前
wang发布了新的文献求助30
14秒前
15秒前
文静达完成签到,获得积分10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 480
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3290180
求助须知:如何正确求助?哪些是违规求助? 2926866
关于积分的说明 8429752
捐赠科研通 2598228
什么是DOI,文献DOI怎么找? 1417761
科研通“疑难数据库(出版商)”最低求助积分说明 659843
邀请新用户注册赠送积分活动 642306