Physics-Informed Neural Networks for Brain Hemodynamic Predictions Using Medical Imaging

医学影像学 血流动力学 人工神经网络 神经影像学 人工智能 计算机科学 医学物理学 物理 神经科学 医学 心理学 内科学
作者
Mohammad Sarabian,Hessam Babaee,Kaveh Laksari
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (9): 2285-2303 被引量:73
标识
DOI:10.1109/tmi.2022.3161653
摘要

Determining brain hemodynamics plays a critical role in the diagnosis and treatment of various cerebrovascular diseases. In this work, we put forth a physics-informed deep learning framework that augments sparse clinical measurements with one-dimensional (1D) reduced-order model (ROM) simulations to generate physically consistent brain hemodynamic parameters with high spatiotemporal resolution. Transcranial Doppler (TCD) ultrasound is one of the most common techniques in the current clinical workflow that enables noninvasive and instantaneous evaluation of blood flow velocity within the cerebral arteries. However, it is spatially limited to only a handful of locations across the cerebrovasculature due to the constrained accessibility through the skull's acoustic windows. Our deep learning framework uses in vivo real-time TCD velocity measurements at several locations in the brain combined with baseline vessel cross-sectional areas acquired from 3D angiography images and provides high-resolution maps of velocity, area, and pressure in the entire brain vasculature. We validate the predictions of our model against in vivo velocity measurements obtained via four-dimensional (4D) flow magnetic resonance imaging (MRI) scans. We then showcase the clinical significance of this technique in diagnosing cerebral vasospasm (CVS) by successfully predicting the changes in vasospastic local vessel diameters based on corresponding sparse velocity measurements. We show this capability by generating synthetic blood flow data after cerebral vasospasm at various levels of stenosis. Here, we demonstrate that the physics-based deep learning approach can estimate and quantify the subject-specific cerebral hemodynamic variables with high accuracy despite lacking knowledge of inlet and outlet boundary conditions, which is a significant limitation for the accuracy of the conventional purely physics-based computational models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
苦尽甘来完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
兴奋烨华完成签到 ,获得积分10
6秒前
6秒前
7秒前
机灵的凡松完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
科研通AI6应助NXK采纳,获得10
9秒前
神锋天下完成签到,获得积分10
9秒前
Misaky发布了新的文献求助10
9秒前
9秒前
明芬发布了新的文献求助10
10秒前
郭甜甜发布了新的文献求助20
10秒前
10秒前
乐一李应助洁净的访文采纳,获得10
11秒前
Asura完成签到,获得积分10
13秒前
十三完成签到 ,获得积分10
13秒前
13秒前
个性的抽象完成签到 ,获得积分10
14秒前
zhuiyu发布了新的文献求助10
14秒前
科研通AI6应助牛牛采纳,获得10
15秒前
李爱国应助吴学仕采纳,获得10
15秒前
DDD应助积极的凌波采纳,获得10
16秒前
轻松的枫叶完成签到,获得积分20
16秒前
kiminonawa应助读书的时候采纳,获得10
16秒前
楚楚完成签到 ,获得积分10
17秒前
小巧寒烟完成签到,获得积分10
17秒前
zxy发布了新的文献求助10
18秒前
科研通AI2S应助Szw666采纳,获得10
18秒前
紧张的铅笔完成签到,获得积分10
18秒前
欢喜的迎丝完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
善学以致用应助凡尘浮生采纳,获得10
20秒前
20秒前
大个应助卷卷采纳,获得10
20秒前
田様应助程博士采纳,获得10
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694141
求助须知:如何正确求助?哪些是违规求助? 5095906
关于积分的说明 15212994
捐赠科研通 4850815
什么是DOI,文献DOI怎么找? 2602009
邀请新用户注册赠送积分活动 1553827
关于科研通互助平台的介绍 1511800