Physics-Informed Neural Networks for Brain Hemodynamic Predictions Using Medical Imaging

医学影像学 血流动力学 人工神经网络 神经影像学 人工智能 计算机科学 医学物理学 物理 神经科学 医学 心理学 内科学
作者
Mohammad Sarabian,Hessam Babaee,Kaveh Laksari
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (9): 2285-2303 被引量:54
标识
DOI:10.1109/tmi.2022.3161653
摘要

Determining brain hemodynamics plays a critical role in the diagnosis and treatment of various cerebrovascular diseases. In this work, we put forth a physics-informed deep learning framework that augments sparse clinical measurements with one-dimensional (1D) reduced-order model (ROM) simulations to generate physically consistent brain hemodynamic parameters with high spatiotemporal resolution. Transcranial Doppler (TCD) ultrasound is one of the most common techniques in the current clinical workflow that enables noninvasive and instantaneous evaluation of blood flow velocity within the cerebral arteries. However, it is spatially limited to only a handful of locations across the cerebrovasculature due to the constrained accessibility through the skull's acoustic windows. Our deep learning framework uses in vivo real-time TCD velocity measurements at several locations in the brain combined with baseline vessel cross-sectional areas acquired from 3D angiography images and provides high-resolution maps of velocity, area, and pressure in the entire brain vasculature. We validate the predictions of our model against in vivo velocity measurements obtained via four-dimensional (4D) flow magnetic resonance imaging (MRI) scans. We then showcase the clinical significance of this technique in diagnosing cerebral vasospasm (CVS) by successfully predicting the changes in vasospastic local vessel diameters based on corresponding sparse velocity measurements. We show this capability by generating synthetic blood flow data after cerebral vasospasm at various levels of stenosis. Here, we demonstrate that the physics-based deep learning approach can estimate and quantify the subject-specific cerebral hemodynamic variables with high accuracy despite lacking knowledge of inlet and outlet boundary conditions, which is a significant limitation for the accuracy of the conventional purely physics-based computational models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悦耳的菠萝完成签到,获得积分10
刚刚
jy发布了新的文献求助10
刚刚
1秒前
1秒前
mfstone发布了新的文献求助10
1秒前
LiLi完成签到,获得积分10
2秒前
仁爱的老四完成签到 ,获得积分10
3秒前
李健的小迷弟应助学术z采纳,获得10
3秒前
科研通AI5应助归海紫翠采纳,获得30
4秒前
热情的初兰完成签到 ,获得积分10
5秒前
顺顺完成签到,获得积分10
5秒前
莫妮卡卡完成签到,获得积分10
5秒前
nbing完成签到,获得积分10
6秒前
SCI发布了新的文献求助50
6秒前
小猫多鱼完成签到,获得积分10
7秒前
7秒前
7秒前
默默尔烟发布了新的文献求助10
7秒前
7秒前
7秒前
宁静致远完成签到,获得积分10
7秒前
天天快乐应助内向秋寒采纳,获得10
10秒前
sfafasfsdf完成签到,获得积分10
10秒前
10秒前
luuuuuu发布了新的文献求助10
11秒前
lai发布了新的文献求助30
11秒前
11秒前
zrk发布了新的文献求助10
11秒前
11秒前
12秒前
ZJJ完成签到,获得积分10
12秒前
花开的声音1217完成签到,获得积分10
13秒前
古药完成签到,获得积分10
14秒前
赘婿应助烟雨行舟采纳,获得10
14秒前
seal发布了新的文献求助10
15秒前
15秒前
16秒前
不吃香菜发布了新的文献求助10
16秒前
RC_Wang应助ZJJ采纳,获得10
16秒前
Chridy发布了新的文献求助10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794