亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Physics-Informed Neural Networks for Brain Hemodynamic Predictions Using Medical Imaging

医学影像学 血流动力学 人工神经网络 神经影像学 人工智能 计算机科学 医学物理学 物理 神经科学 医学 心理学 内科学
作者
Mohammad Sarabian,Hessam Babaee,Kaveh Laksari
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (9): 2285-2303 被引量:73
标识
DOI:10.1109/tmi.2022.3161653
摘要

Determining brain hemodynamics plays a critical role in the diagnosis and treatment of various cerebrovascular diseases. In this work, we put forth a physics-informed deep learning framework that augments sparse clinical measurements with one-dimensional (1D) reduced-order model (ROM) simulations to generate physically consistent brain hemodynamic parameters with high spatiotemporal resolution. Transcranial Doppler (TCD) ultrasound is one of the most common techniques in the current clinical workflow that enables noninvasive and instantaneous evaluation of blood flow velocity within the cerebral arteries. However, it is spatially limited to only a handful of locations across the cerebrovasculature due to the constrained accessibility through the skull's acoustic windows. Our deep learning framework uses in vivo real-time TCD velocity measurements at several locations in the brain combined with baseline vessel cross-sectional areas acquired from 3D angiography images and provides high-resolution maps of velocity, area, and pressure in the entire brain vasculature. We validate the predictions of our model against in vivo velocity measurements obtained via four-dimensional (4D) flow magnetic resonance imaging (MRI) scans. We then showcase the clinical significance of this technique in diagnosing cerebral vasospasm (CVS) by successfully predicting the changes in vasospastic local vessel diameters based on corresponding sparse velocity measurements. We show this capability by generating synthetic blood flow data after cerebral vasospasm at various levels of stenosis. Here, we demonstrate that the physics-based deep learning approach can estimate and quantify the subject-specific cerebral hemodynamic variables with high accuracy despite lacking knowledge of inlet and outlet boundary conditions, which is a significant limitation for the accuracy of the conventional purely physics-based computational models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嵇元容完成签到,获得积分10
5秒前
lyy完成签到,获得积分10
8秒前
可爱的函函应助lyy采纳,获得10
14秒前
欣喜的书芹完成签到 ,获得积分10
27秒前
Tendency完成签到 ,获得积分10
27秒前
RONG完成签到 ,获得积分10
28秒前
Nikki发布了新的文献求助10
29秒前
39秒前
43秒前
高山流水完成签到 ,获得积分10
46秒前
51秒前
充电宝应助暮然采纳,获得10
53秒前
Elthrai完成签到 ,获得积分10
55秒前
江城一霸完成签到,获得积分10
55秒前
shuiyu发布了新的文献求助10
56秒前
levanquy260602完成签到,获得积分10
58秒前
Qian完成签到,获得积分10
59秒前
xiaotong完成签到,获得积分10
59秒前
1分钟前
打打应助xml采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
王平安完成签到 ,获得积分10
1分钟前
暮然发布了新的文献求助10
1分钟前
1分钟前
1分钟前
So完成签到 ,获得积分10
1分钟前
喜悦雍发布了新的文献求助10
1分钟前
芋泥芝士果茶完成签到,获得积分10
1分钟前
小二郎应助小天采纳,获得10
1分钟前
1分钟前
灵巧大地发布了新的文献求助10
1分钟前
1分钟前
xml发布了新的文献求助10
1分钟前
暮然完成签到,获得积分10
1分钟前
gym发布了新的文献求助10
1分钟前
传奇3应助喜悦雍采纳,获得10
1分钟前
落后的静竹完成签到,获得积分10
1分钟前
CipherSage应助shuiyu采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458817
求助须知:如何正确求助?哪些是违规求助? 4564805
关于积分的说明 14296938
捐赠科研通 4489857
什么是DOI,文献DOI怎么找? 2459372
邀请新用户注册赠送积分活动 1449054
关于科研通互助平台的介绍 1424535