Collaborative gas drainage technology of high and low level roadways in highly-gassy coal seam mining

排水 煤矿开采 钻孔 采矿工程 石油工程 煤矿开采中的几个问题 地质学 温室气体 岩土工程 工程类 废物管理 生态学 生物 海洋学
作者
Chao Xu,Kai Wang,Xiaomin Li,Liang Yuan,Chunyu Zhao,Haijun Guo
出处
期刊:Fuel [Elsevier]
卷期号:323: 124325-124325 被引量:27
标识
DOI:10.1016/j.fuel.2022.124325
摘要

China's coal resources are gradually being mined deeper. The gas content and emissions of deep coal seams increase significantly compared to shallow seams. In the mining of the highly-gassy coal seams, strengthening gas drainage in the goaf and fissure zone can improve the efficiency of coal seams and reduce carbon emissions. However, the method of the borehole or high level roadway often cannot meet the demand of goaf and fracture zone gas drainage. Thus, a new technology of gas drainage in goaf and fracture zone is proposed: cooperative gas drainage via high and low level roadways. Taking the Pingshu coal mine as an example, the gas flow field model of the goaf was established. Fluent software was used to analyze and simulate different gas drainage effects of high and low level roadways under different layers and negative pressure conditions, and to optimize the process parameters of high and low level roadways. The results show that the collaborative drainage effect of high and low level roadways is much better when the horizontal and vertical distances of high level roadway are 32 m and 30 m, the horizontal distance of low level roadway is 5 m, and the negative drainage pressure of both roadways is 15 kPa. The gas concentration in the upper corner can be effectively reduced under the condition. On the basis of the optimized parameters, the collaborative gas drainage of high and low level roadways was applied and effectively solved the problems of gas accumulation and overrun in the upper corner of the working face, where the gas concentration was less than 0.45%. The paper provides a new approach for gas drainage in the highly-gassy coal seams.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏小安完成签到,获得积分10
刚刚
1秒前
ymh完成签到,获得积分10
1秒前
starry发布了新的文献求助10
1秒前
hualidy完成签到,获得积分10
1秒前
qifa完成签到,获得积分10
1秒前
1秒前
春夏秋冬发布了新的文献求助10
1秒前
习习发布了新的文献求助10
2秒前
2秒前
往事无痕完成签到 ,获得积分10
3秒前
3秒前
3秒前
逸龙完成签到,获得积分10
3秒前
buno应助单纯的雅香采纳,获得10
4秒前
xinchengzhu发布了新的文献求助10
5秒前
派大星发布了新的文献求助10
5秒前
科研通AI5应助黄紫红蓝采纳,获得10
6秒前
6秒前
6秒前
fff发布了新的文献求助10
6秒前
6秒前
7秒前
科研人发布了新的文献求助10
7秒前
7秒前
徐慕源发布了新的文献求助10
7秒前
wenwen完成签到,获得积分10
7秒前
XZZH完成签到,获得积分10
8秒前
清浅发布了新的文献求助10
8秒前
车到山前必有路女士完成签到,获得积分10
8秒前
JamesPei应助Ripples采纳,获得10
8秒前
8秒前
我是老大应助乐园采纳,获得10
9秒前
10秒前
个木发布了新的文献求助10
10秒前
谨慎不二发布了新的文献求助10
10秒前
CodeCraft应助lishunzcqty采纳,获得10
11秒前
青丝落花完成签到,获得积分10
11秒前
化学小学生完成签到,获得积分10
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678