Tensor Wiener Filter

维纳滤波器 数学 滤波器(信号处理) 算法 信号处理 计算机科学 应用数学 电信 雷达 计算机视觉
作者
Shih Yu Chang,Hsiao-Chun Wu
出处
期刊:IEEE Transactions on Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:70: 410-422 被引量:4
标识
DOI:10.1109/tsp.2022.3140722
摘要

In signal processing and data analytics, Wiener filter is a classical powerful tool to transform an input signal to match a desired or target signal by a linear time-invariant (LTI) filter. The input signal of a Wiener filter is one-dimensional while its associated least-squares solution, namely Wiener-Hopf equation, involves a two-dimensional data-array, or correlation matrix. However, the actual match should often be carried out between a multi-dimensional filtered signal-sequence, which is the output of a multi-channel filter characterized as a linear-time-invariant MIMO (multi-input and multi-output) system, and a multi-dimensional desired signal-sequence simultaneously. In the presence of such a multi-channel filter, the solution to the corresponding Wiener filter, which we call MIMO Wiener-Hopf equation now, involves a correlation tensor. Therefore, we call this optimal multi-channel filter Tensor Wiener Filter (TWF). Due to lack of the pertinent mathematical framework of needed tensor operations, TWF has never been investigated so far. Now we would like to make the first-ever attempt to establish a new mathematical framework for TWF, which relies on the inverse of the correlation tensor. We propose the new parallel block-Jacobi tensor-inversion algorithm for this tensor inversion. A typical application of the new TWF approach is illustrated as a multi-channel linear predictor (MCLP) built upon a multi-channel autoregressive (MCAR) filter with multi-dimensional input data. Numerical experiments pertaining to seismic data, optical images, and macroeconomic time-series are conducted in comparison with other existing methods. The memory- and computational-complexities corresponding to our proposed parallel block-Jacobi tensor-inversion algorithm are also studied in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zzz关闭了zzz文献求助
1秒前
harvey1989完成签到,获得积分10
1秒前
pcr163应助完美冷安采纳,获得50
1秒前
送不送书7完成签到,获得积分10
2秒前
英姑应助和谐的追命采纳,获得10
3秒前
Hello应助于智豪采纳,获得10
3秒前
Hello应助LSY采纳,获得10
5秒前
桐桐应助恒温失效采纳,获得10
5秒前
杜若发布了新的文献求助30
5秒前
汉堡包应助zygclwl采纳,获得10
6秒前
zcD完成签到,获得积分10
7秒前
聪明无颜发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
艺阳完成签到,获得积分10
9秒前
10秒前
10秒前
馒头酶关注了科研通微信公众号
10秒前
只想求文献完成签到,获得积分20
10秒前
cc完成签到,获得积分20
10秒前
11秒前
11秒前
美满的大象完成签到 ,获得积分10
11秒前
11秒前
1111应助别偷我增肌粉采纳,获得10
11秒前
12秒前
12秒前
12秒前
12秒前
tjxhtj完成签到,获得积分10
12秒前
12秒前
13秒前
无限的宫苴完成签到 ,获得积分20
13秒前
华仔应助离歌采纳,获得30
13秒前
健珍发布了新的文献求助10
15秒前
twotwomi发布了新的文献求助10
15秒前
瓜瓜发布了新的文献求助10
15秒前
狂野忆文发布了新的文献求助10
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961294
求助须知:如何正确求助?哪些是违规求助? 3507579
关于积分的说明 11136907
捐赠科研通 3240039
什么是DOI,文献DOI怎么找? 1790707
邀请新用户注册赠送积分活动 872450
科研通“疑难数据库(出版商)”最低求助积分说明 803255