Tensor Wiener Filter

维纳滤波器 数学 滤波器(信号处理) 算法 信号处理 计算机科学 应用数学 电信 计算机视觉 雷达
作者
Shih Yu Chang,Hsiao-Chun Wu
出处
期刊:IEEE Transactions on Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:70: 410-422 被引量:4
标识
DOI:10.1109/tsp.2022.3140722
摘要

In signal processing and data analytics, Wiener filter is a classical powerful tool to transform an input signal to match a desired or target signal by a linear time-invariant (LTI) filter. The input signal of a Wiener filter is one-dimensional while its associated least-squares solution, namely Wiener-Hopf equation, involves a two-dimensional data-array, or correlation matrix. However, the actual match should often be carried out between a multi-dimensional filtered signal-sequence, which is the output of a multi-channel filter characterized as a linear-time-invariant MIMO (multi-input and multi-output) system, and a multi-dimensional desired signal-sequence simultaneously. In the presence of such a multi-channel filter, the solution to the corresponding Wiener filter, which we call MIMO Wiener-Hopf equation now, involves a correlation tensor. Therefore, we call this optimal multi-channel filter Tensor Wiener Filter (TWF). Due to lack of the pertinent mathematical framework of needed tensor operations, TWF has never been investigated so far. Now we would like to make the first-ever attempt to establish a new mathematical framework for TWF, which relies on the inverse of the correlation tensor. We propose the new parallel block-Jacobi tensor-inversion algorithm for this tensor inversion. A typical application of the new TWF approach is illustrated as a multi-channel linear predictor (MCLP) built upon a multi-channel autoregressive (MCAR) filter with multi-dimensional input data. Numerical experiments pertaining to seismic data, optical images, and macroeconomic time-series are conducted in comparison with other existing methods. The memory- and computational-complexities corresponding to our proposed parallel block-Jacobi tensor-inversion algorithm are also studied in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
小马甲应助Ship采纳,获得10
1秒前
西瓜发布了新的文献求助10
3秒前
4秒前
shadinganchun完成签到,获得积分10
4秒前
5秒前
隐形曼青应助Dream采纳,获得10
5秒前
橘子石榴完成签到 ,获得积分10
6秒前
TT2022发布了新的文献求助10
6秒前
ranqi完成签到,获得积分10
7秒前
烟花应助鳗鱼邪欢采纳,获得10
7秒前
靜心完成签到 ,获得积分10
7秒前
zx发布了新的文献求助10
9秒前
ranqi发布了新的文献求助10
10秒前
11秒前
要减肥的从筠完成签到,获得积分10
13秒前
13秒前
14秒前
15秒前
小蘑菇应助kyfw采纳,获得10
15秒前
liu完成签到,获得积分10
16秒前
顾矜应助科研通管家采纳,获得30
16秒前
不配.应助科研通管家采纳,获得10
16秒前
轻松冰旋应助科研通管家采纳,获得10
16秒前
浅尝离白应助科研通管家采纳,获得30
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
轻松冰旋应助科研通管家采纳,获得10
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
深情安青应助科研通管家采纳,获得10
17秒前
17秒前
林药师完成签到,获得积分10
18秒前
Tarahu发布了新的文献求助10
18秒前
20秒前
doudou完成签到,获得积分10
21秒前
22秒前
Dream发布了新的文献求助10
22秒前
奋斗大葡萄完成签到,获得积分10
23秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141929
求助须知:如何正确求助?哪些是违规求助? 2792912
关于积分的说明 7804490
捐赠科研通 2449236
什么是DOI,文献DOI怎么找? 1303108
科研通“疑难数据库(出版商)”最低求助积分说明 626771
版权声明 601291