清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Machine Learning Model Based on Tumor and Immune Biomarkers to Predict Undetectable MRD and Survival Outcomes in Multiple Myeloma

多发性骨髓瘤 微小残留病 养生 医学 肿瘤科 无进展生存期 骨髓 内科学 总体生存率
作者
Camilla Guerrero,Noemí Puig,María‐Teresa Cedena,Ibai Goicoechea,Cristina Pérez,Juan‐José Garcés,Cirino Botta,Marı́a José Calasanz,Norma C. Gutiérrez,María-Luisa Martín-Ramos,Albert Oriol,Rafael Ríos,Miguel‐Teodoro Hernández,Rafael Martínez-Martínez,Joan Bargay,Felipe de Arriba,Luis Palomera,Ana Pilar González-Rodríguez,Adrián Mosquera-Orgueira,Marta Sonia González,Joaquín Martínez‐López,Juan José Lahuerta,Laura Rosiñol,Joan Bladé,María‐Victoria Mateos,Jesús F. San Miguel,Bruno Paiva
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:28 (12): 2598-2609 被引量:24
标识
DOI:10.1158/1078-0432.ccr-21-3430
摘要

Abstract Purpose: Undetectable measurable residual disease (MRD) is a surrogate of prolonged survival in multiple myeloma. Thus, treatment individualization based on the probability of a patient achieving undetectable MRD with a singular regimen could represent a new concept toward personalized treatment, with fast assessment of its success. This has never been investigated; therefore, we sought to define a machine learning model to predict undetectable MRD at the onset of multiple myeloma. Experimental Design: This study included 487 newly diagnosed patients with multiple myeloma. The training (n = 152) and internal validation cohorts (n = 149) consisted of 301 transplant-eligible patients with active multiple myeloma enrolled in the GEM2012MENOS65 trial. Two external validation cohorts were defined by 76 high-risk transplant-eligible patients with smoldering multiple myeloma enrolled in the Grupo Español de Mieloma(GEM)-CESAR trial, and 110 transplant-ineligible elderly patients enrolled in the GEM-CLARIDEX trial. Results: The most effective model to predict MRD status resulted from integrating cytogenetic [t(4;14) and/or del(17p13)], tumor burden (bone marrow plasma cell clonality and circulating tumor cells), and immune-related biomarkers. Accurate predictions of MRD outcomes were achieved in 71% of cases in the GEM2012MENOS65 trial (n = 214/301) and 72% in the external validation cohorts (n = 134/186). The model also predicted sustained MRD negativity from consolidation onto 2 years maintenance (GEM2014MAIN). High-confidence prediction of undetectable MRD at diagnosis identified a subgroup of patients with active multiple myeloma with 80% and 93% progression-free and overall survival rates at 5 years. Conclusions: It is possible to accurately predict MRD outcomes using an integrative, weighted model defined by machine learning algorithms. This is a new concept toward individualized treatment in multiple myeloma. See related commentary by Pawlyn and Davies, p. 2482
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时间煮雨我煮鱼完成签到,获得积分10
4秒前
巴巴爸爸和他的孩子们完成签到,获得积分10
21秒前
李友健完成签到 ,获得积分10
22秒前
通科研完成签到 ,获得积分10
38秒前
未完成完成签到,获得积分10
52秒前
山山而川完成签到 ,获得积分10
1分钟前
2分钟前
Tiger完成签到,获得积分10
2分钟前
2分钟前
赵先生发布了新的文献求助100
2分钟前
Yolo完成签到 ,获得积分10
2分钟前
Orange应助美丽佩奇采纳,获得10
3分钟前
英俊的铭应助三点水采纳,获得10
3分钟前
3分钟前
ldjldj_2004完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
三点水发布了新的文献求助10
3分钟前
美丽佩奇发布了新的文献求助10
3分钟前
美丽佩奇完成签到 ,获得积分20
3分钟前
4分钟前
Cistone发布了新的文献求助10
4分钟前
月军完成签到 ,获得积分10
4分钟前
4分钟前
雪山飞龙发布了新的文献求助10
4分钟前
jw发布了新的文献求助10
4分钟前
jw完成签到,获得积分10
4分钟前
敢敢完成签到 ,获得积分10
5分钟前
Feng完成签到,获得积分20
5分钟前
vitamin完成签到 ,获得积分10
5分钟前
雪山飞龙完成签到,获得积分10
5分钟前
5分钟前
北国雪未消完成签到 ,获得积分10
5分钟前
YZ完成签到 ,获得积分10
6分钟前
牛轰轰发布了新的文献求助10
6分钟前
kingcoffee完成签到 ,获得积分10
6分钟前
Explorer应助牛轰轰采纳,获得200
6分钟前
caroline完成签到 ,获得积分10
7分钟前
lovexa完成签到,获得积分10
7分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460136
求助须知:如何正确求助?哪些是违规求助? 3054407
关于积分的说明 9042000
捐赠科研通 2743768
什么是DOI,文献DOI怎么找? 1505283
科研通“疑难数据库(出版商)”最低求助积分说明 695610
邀请新用户注册赠送积分活动 694887