催化作用
镧系元素
掺杂剂
甲苯
无机化学
氧化态
兴奋剂
离子半径
价(化学)
化学
离解(化学)
电子转移
催化氧化
氧气
材料科学
离子
物理化学
有机化学
光电子学
作者
Ruosi Peng,Haozhi Zhang,Yanjie Guo,Weiqing Huang,You Zhang,Junliang Wu,Mingli Fu,Chenglong Yu,Daiqi Ye
标识
DOI:10.1016/j.jcis.2022.01.071
摘要
The present work was undertaken to know the lanthanide doping effect on the physicochemical properties of Pt/CeO2 catalysts and their catalytic activity for toluene oxidation. A series of lanthanide ions (La, Pr, Nd, Sm and Gd) were incorporated into ceria lattice by hydrothermal method, and the Pt nanoparticles with equal quality were successfully loaded on various ceria-based supports. Their catalytic performance toward toluene oxidation shows a remarkable lanthanide-doping effect, and the activity is much dependent on the ion radius and valence state of dopants. Owing to smaller ion radius and low valence state, the dopant of Gd would form more Gd-Ce complex and less GdO8-type complex, generating more oxygen vacancies and then promoting oxygen replenishment. Furthermore, the high concentration of oxygen vacancy would drive electrons to transfer from support to metal, and thus electron-rich and under-coordinated Pt particles that are favorable for toluene adsorption and dissociation are obtained. Attributing to above positive factors, the doping of Gd would effectively enhance the catalytic oxidation of toluene over Pt/CeO2 catalyst. In addition, the Pt/CeGdO2 sample exhibits an excellent reaction stability and resistance of concentration impact.
科研通智能强力驱动
Strongly Powered by AbleSci AI