Real-time identification of the tyre–road friction coefficient using an unscented Kalman filter and mean-square-error-weighted fusion

卡尔曼滤波器 控制理论(社会学) 扩展卡尔曼滤波器 快速卡尔曼滤波 无味变换 不变扩展卡尔曼滤波器 传感器融合 均方误差 计算机科学 工程类 数学 人工智能 统计 控制(管理)
作者
Long Chen,Mingyuan Bian,Yugong Luo,Keqiang Li
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE Publishing]
卷期号:230 (6): 788-802 被引量:33
标识
DOI:10.1177/0954407015595725
摘要

Vehicle active safety systems can benefit significantly from a priori knowledge of the road conditions. This paper proposes a real-time tyre–road friction estimation algorithm based on an unscented Kalman filter and mean-square-error-weighted fusion, using measurements related to the electric vehicle and in-wheel motors. Because the modules are mutually independent, the dimensionality of the matrix used in the filtering process can be reduced to shorten the computational period. The approach can also work more effectively in various conditions than those techniques which focus on a specific direction of the vehicle dynamics. First, a modified Dugoff et al. tyre model is considered to express the non-linear characteristics of the tyres. Then, to observe the longitudinal tyre forces and the lateral tyre forces, a parameter identification technique that utilizes the information from an inertial sensor and a gyroscope is introduced. An unscented Kalman filter rather than the traditional linear filter is adopted to obtain higher accuracy in the saturation region. After the relationship between the mean square error and the side-slip angle or the slip ratio is taken into account, the final identified value is set by combining the results from the longitudinal unscented Kalman filter and the lateral unscented Kalman filter in order to improve the accuracy and the robustness further. Experiments conducted on both a dry road and a slippery road verify that the method based on an unscented Kalman filter can identify different tyre–road friction levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助Tonald Yang采纳,获得10
刚刚
lfzw完成签到,获得积分10
刚刚
1秒前
1秒前
Yw zhang完成签到,获得积分20
1秒前
认真誉完成签到 ,获得积分10
2秒前
3秒前
restudy68完成签到,获得积分10
3秒前
充电宝应助哦吼采纳,获得10
3秒前
二向箔完成签到,获得积分10
3秒前
开朗满天发布了新的文献求助10
3秒前
英俊的铭应助叶枫采纳,获得10
4秒前
Giner完成签到 ,获得积分10
4秒前
刻苦的晓蕾完成签到,获得积分10
4秒前
zzz完成签到,获得积分10
4秒前
陈某发布了新的文献求助10
5秒前
zhou发布了新的文献求助10
5秒前
万能图书馆应助乐观寻绿采纳,获得10
5秒前
5秒前
轻松博超发布了新的文献求助10
5秒前
赵峰完成签到,获得积分10
7秒前
LI发布了新的文献求助10
7秒前
7秒前
顾矜应助Yw zhang采纳,获得10
7秒前
兰陵萧笑声完成签到,获得积分10
7秒前
一一发布了新的文献求助10
8秒前
鸽子的迷信完成签到,获得积分10
8秒前
坚定龙猫完成签到,获得积分10
8秒前
清酒少年游完成签到,获得积分10
8秒前
suicone完成签到,获得积分10
8秒前
水水完成签到,获得积分10
9秒前
cc完成签到 ,获得积分10
9秒前
谢朝邦完成签到 ,获得积分10
9秒前
啊强完成签到 ,获得积分10
10秒前
严泰完成签到,获得积分10
10秒前
wenhui应助君临采纳,获得10
11秒前
英姑应助陈某采纳,获得10
11秒前
开朗满天完成签到,获得积分10
11秒前
xzhu发布了新的文献求助10
11秒前
豆包完成签到,获得积分10
11秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729599
求助须知:如何正确求助?哪些是违规求助? 3274630
关于积分的说明 9987565
捐赠科研通 2989918
什么是DOI,文献DOI怎么找? 1640809
邀请新用户注册赠送积分活动 779408
科研通“疑难数据库(出版商)”最低求助积分说明 748200