拉回吸引子
吸引子
拉回
数学
有界函数
李雅普诺夫指数
数学分析
分形维数
背景(考古学)
维数(图论)
稳定性理论
非线性系统
李雅普诺夫函数
纯数学
分形
物理
古生物学
量子力学
生物
作者
José A. Langa,Grzegorz Łukaszewicz,José Real
标识
DOI:10.1016/j.na.2005.12.017
摘要
We study the asymptotic behaviour of non-autonomous 2D Navier–Stokes equations in unbounded domains for which a Poincaré inequality holds. In particular, we give sufficient conditions for their pullback attractor to have finite fractal dimension. The existence of pullback attractors in this framework comes from the existence of bounded absorbing sets of pullback asymptotically compact processes [T. Caraballo, G. Łukaszewicz, J. Real, Pullback attractors for asymptotically compact nonautonomous dynamical systems, Nonlinear Anal. 64 (3) (2006) 484–498]. We show that, under suitable conditions, the method of Lyapunov exponents in [P. Constantin, C. Foias, R. Temam, Attractors representing turbulent flows, Mem. Amer. Math. Soc. 53 (1984) [5]] for the dimension of attractors can be developed in this new context.
科研通智能强力驱动
Strongly Powered by AbleSci AI