作者
Raz Avni,Moran Nave,Omer Barad,Kobi Baruch,Sven Twardziok,Heidrun Gundlach,Iago Hale,Martin Mascher,M. Spannagl,Krystalee Wiebe,Katherine W. Jordan,Guy Golan,Jasline Deek,Batsheva Ben-Zvi,Gil Ben-Zvi,Axel Himmelbach,Ron MacLachlan,Andrew Sharpe,Allan K. Fritz,Roi Ben‐David,Hikmet Budak,Tzion Fahima,Abraham B. Korol,Justin D. Faris,Alvaro G. Hernandez,Mark A. Mikel,Avraham A. Levy,Brian J. Steffenson,Marco Maccaferri,Roberto Tuberosa,Luigi Cattivelli,Primetta Faccioli,Aldo Ceriotti,Khalil Kashkush,Mohammad Pourkheirandish,Takao Komatsuda,Tamar Eilam,Hanan Sela,Amir Sharon,Nir Ohad,Daniel Chamovitz,Klaus Mayer,Nils Stein,Gil Ronen,Zvi Peleg,Curtis Pozniak,Eduard Akhunov,Assaf Distelfeld
摘要
Wheat (Triticum spp.) is one of the founder crops that likely drove the Neolithic transition to sedentary agrarian societies in the Fertile Crescent more than 10,000 years ago. Identifying genetic modifications underlying wheat's domestication requires knowledge about the genome of its allo-tetraploid progenitor, wild emmer (T. turgidum ssp. dicoccoides). We report a 10.1-gigabase assembly of the 14 chromosomes of wild tetraploid wheat, as well as analyses of gene content, genome architecture, and genetic diversity. With this fully assembled polyploid wheat genome, we identified the causal mutations in Brittle Rachis 1 (TtBtr1) genes controlling shattering, a key domestication trait. A study of genomic diversity among wild and domesticated accessions revealed genomic regions bearing the signature of selection under domestication. This reference assembly will serve as a resource for accelerating the genome-assisted improvement of modern wheat varieties.