Facilitating prediction of adverse drug reactions by using knowledge graphs and multi-label learning models

计算机科学 药品 药物反应 机器学习 知识图 人工智能 药理学 医学
作者
Emir Muñoz,Vít Nováček,Pierre-Yves Vandenbussche
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:20 (1): 190-202 被引量:65
标识
DOI:10.1093/bib/bbx099
摘要

Timely identification of adverse drug reactions (ADRs) is highly important in the domains of public health and pharmacology. Early discovery of potential ADRs can limit their effect on patient lives and also make drug development pipelines more robust and efficient. Reliable in silico prediction of ADRs can be helpful in this context, and thus, it has been intensely studied. Recent works achieved promising results using machine learning. The presented work focuses on machine learning methods that use drug profiles for making predictions and use features from multiple data sources. We argue that despite promising results, existing works have limitations, especially regarding flexibility in experimenting with different data sets and/or predictive models. We suggest to address these limitations by generalization of the key principles used by the state of the art. Namely, we explore effects of: (1) using knowledge graphs—machine-readable interlinked representations of biomedical knowledge—as a convenient uniform representation of heterogeneous data; and (2) casting ADR prediction as a multi-label ranking problem. We present a specific way of using knowledge graphs to generate different feature sets and demonstrate favourable performance of selected off-the-shelf multi-label learning models in comparison with existing works. Our experiments suggest better suitability of certain multi-label learning methods for applications where ranking is preferred. The presented approach can be easily extended to other feature sources or machine learning methods, making it flexible for experiments tuned toward specific requirements of end users. Our work also provides a clearly defined and reproducible baseline for any future related experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chem34完成签到,获得积分10
3秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
hhh2018687完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
嘒彼小星完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
9秒前
ri_290完成签到,获得积分10
9秒前
10秒前
nsc发布了新的文献求助30
12秒前
nsc发布了新的文献求助10
12秒前
nsc发布了新的文献求助10
12秒前
nsc发布了新的文献求助10
12秒前
nsc发布了新的文献求助10
12秒前
nsc发布了新的文献求助10
12秒前
nsc发布了新的文献求助10
12秒前
nsc发布了新的文献求助10
12秒前
nsc发布了新的文献求助10
12秒前
nsc发布了新的文献求助10
12秒前
nsc发布了新的文献求助10
12秒前
nsc发布了新的文献求助10
12秒前
nsc发布了新的文献求助30
12秒前
nsc发布了新的文献求助10
12秒前
nsc发布了新的文献求助10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022