Facilitating prediction of adverse drug reactions by using knowledge graphs and multi-label learning models

计算机科学 药品 药物反应 机器学习 知识图 人工智能 药理学 医学
作者
Emir Muñoz,Vít Nováček,Pierre-Yves Vandenbussche
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:20 (1): 190-202 被引量:65
标识
DOI:10.1093/bib/bbx099
摘要

Timely identification of adverse drug reactions (ADRs) is highly important in the domains of public health and pharmacology. Early discovery of potential ADRs can limit their effect on patient lives and also make drug development pipelines more robust and efficient. Reliable in silico prediction of ADRs can be helpful in this context, and thus, it has been intensely studied. Recent works achieved promising results using machine learning. The presented work focuses on machine learning methods that use drug profiles for making predictions and use features from multiple data sources. We argue that despite promising results, existing works have limitations, especially regarding flexibility in experimenting with different data sets and/or predictive models. We suggest to address these limitations by generalization of the key principles used by the state of the art. Namely, we explore effects of: (1) using knowledge graphs—machine-readable interlinked representations of biomedical knowledge—as a convenient uniform representation of heterogeneous data; and (2) casting ADR prediction as a multi-label ranking problem. We present a specific way of using knowledge graphs to generate different feature sets and demonstrate favourable performance of selected off-the-shelf multi-label learning models in comparison with existing works. Our experiments suggest better suitability of certain multi-label learning methods for applications where ranking is preferred. The presented approach can be easily extended to other feature sources or machine learning methods, making it flexible for experiments tuned toward specific requirements of end users. Our work also provides a clearly defined and reproducible baseline for any future related experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彳亍1117应助韭菜采纳,获得10
刚刚
wanci应助韭菜采纳,获得10
刚刚
Ch完成签到 ,获得积分10
1秒前
刘小二拌面完成签到,获得积分10
1秒前
静谧完成签到 ,获得积分10
2秒前
甘乐完成签到,获得积分10
3秒前
~~~发布了新的文献求助10
4秒前
醉熏的幼珊完成签到,获得积分10
5秒前
完美世界应助hs采纳,获得10
8秒前
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
10秒前
王王完成签到,获得积分10
10秒前
丰盛的煎饼应助oleskarabach采纳,获得10
12秒前
科研通AI2S应助oleskarabach采纳,获得10
12秒前
toptop完成签到,获得积分10
13秒前
Zachary完成签到 ,获得积分10
13秒前
Tom完成签到,获得积分10
14秒前
14秒前
祥子完成签到,获得积分10
15秒前
sxy完成签到,获得积分10
15秒前
16秒前
不配.应助meteorabob采纳,获得10
16秒前
很在乎发布了新的文献求助10
16秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139867
求助须知:如何正确求助?哪些是违规求助? 2790746
关于积分的说明 7796497
捐赠科研通 2447159
什么是DOI,文献DOI怎么找? 1301623
科研通“疑难数据库(出版商)”最低求助积分说明 626313
版权声明 601185