Mechanisms of Degradation and Necessity of ALD Coatings for High Voltage NMC532, NMC622, and NMC811 Li-Ion Cells

介电谱 材料科学 降级(电信) 阳极 电池(电) 电解质 泄流深度 阴极 电压 纳米技术 锂(药物) 电极 化学工程 电化学 化学 电气工程 工程类 内分泌学 物理化学 功率(物理) 物理 医学 量子力学
作者
Kevin Dahlberg,James E. Trevey,David M. King,Lamuel David,Rose E. Ruther,David L. Wood,Lisa Stevenson,Dennis Townsend
出处
期刊:Meeting abstracts 卷期号:MA2017-02 (4): 380-380
标识
DOI:10.1149/ma2017-02/4/380
摘要

Lithium-ion battery-based energy storage is widely regarded as the best technology to realize affordable electrification of automobiles (hybrids and EVs), buses, and ships. However strategies to realize higher energy density and lower cost come at the expense of cell lifetime and safety. For example, 10-20% higher energy density can be achieved by charging cells with layered cathodes (e.g., NMC and NCA) to voltages higher than 4.2V, however this is well known to accelerate capacity fade, resistance growth, SEI growth, and gas evolution. Although studies increasingly show the sites of degradation are active material particle surfaces and the active material-electrolyte interface, the specific mechanisms of these phenomena remain unclear and difficult to quantify. Without clear understanding of the specific degradation mechanisms that dominate cell failure during higher voltage cycling, solutions to enable high voltage operation will have limited success. We have isolated key mechanisms occurring at higher voltages in NMC532, NMC622, and NMC811 cells including positive electrode resistance growth (R ct ) as measured by Electrochemical Impedance Spectroscopy (EIS), and Mn dissolution as measured by Inductively Coupled Plasma (ICP) of cycled negative electrodes, and shown the correspondence to cycle life of 95mm x 64mm pouch cells using graphite anodes. Foremost, we have found that Al 2 O 3 ALD coatings dramatically diminish these degradation mechanisms and enable significantly better cycling performance in pouch cells when charged to higher voltage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yvonne发布了新的文献求助10
刚刚
欢乐的兔子完成签到,获得积分10
1秒前
Ruppa完成签到,获得积分10
1秒前
冰冰完成签到,获得积分10
2秒前
2秒前
在水一方应助科研通管家采纳,获得10
3秒前
xjcy应助科研通管家采纳,获得10
3秒前
烧瓶杀手应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
科目三应助知愈采纳,获得10
3秒前
xjcy应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得30
4秒前
4秒前
Ava应助科研通管家采纳,获得10
4秒前
Akim应助子卿采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
一一应助科研通管家采纳,获得20
4秒前
4秒前
xjcy应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
和谐忆南发布了新的文献求助10
5秒前
6秒前
xt完成签到,获得积分10
6秒前
mhl11应助小田心采纳,获得10
7秒前
8秒前
上官若男应助Yvonne采纳,获得10
8秒前
9秒前
大包完成签到,获得积分20
9秒前
FashionBoy应助JIEUN采纳,获得10
10秒前
zy完成签到 ,获得积分10
10秒前
科研通AI2S应助xinlei2023采纳,获得10
10秒前
爆米花应助xgx984采纳,获得10
12秒前
12秒前
呼噜噜完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3297208
求助须知:如何正确求助?哪些是违规求助? 2932718
关于积分的说明 8458529
捐赠科研通 2605409
什么是DOI,文献DOI怎么找? 1422272
科研通“疑难数据库(出版商)”最低求助积分说明 661364
邀请新用户注册赠送积分活动 644603