单核细胞增生李斯特菌
单叠氮丙二钠
化学
免疫磁选
链霉亲和素
生物素化
生物传感器
核酸
生物素
细菌
色谱法
检出限
微生物学
生物化学
实时聚合酶链反应
生物
基因
遗传学
作者
Fulai Li,Fan Li,Dan Luo,Weihua Lai,Yonghua Xiong,Hengyi Xu
标识
DOI:10.1016/j.aca.2018.02.009
摘要
Infectious diseases caused by Listeria monocytogenes pose a great threat to public health worldwide. Therefore, a rapid and efficient method for L. monocytogenes detection is needed. In this study, a biotin-exposure-based immunomagnetic separation (IMS) method was developed. That is, biotinylated antibody was first targeted to L. monocytogenes. Then, streptavidin-functionalized magnetic nanoparticles were added and anchored onto L. monocytogenes cells indirectly through the strong noncovalent interaction between streptavidin and biotin. Biotin-exposure-based IMS exhibited an excellent capability to enrich L. monocytogenes. Specifically, more than 90% of L. monocytogenes was captured when the bacterial concentration was lower than 104 colony-forming units (CFU)/mL. Importantly, the antibody dosage was reduced by 10 times of that in our previous study, which used antibody direct-conjugated magnetic nanoparticles. Propidium monoazide (PMA) treatment prior to PCR amplification could eliminate the false-positive results from dead bacteria and detected viable L. monocytogenes sensitively and specifically. For viable L. monocytogenes detection, enriched L. monocytogenes was treated with PMA prior to asymmetric PCR amplification. The detection limits of the combined IMS with nucleic acid lateral flow (NALF) biosensor for viable L. monocytogenes detection were 3.5 × 103 CFU/mL in phosphate buffer solution and 3.5 × 104 CFU/g in lettuce samples. The whole assay process of recognizing viable L. monocytogenes was completed within 6 h. The proposed biotin-exposure-mediated IMS combined with a disposable NALF biosensor platform posed no health risk to the end user, and possessed potential applications in the rapid screening and identification of foodborne pathogens.
科研通智能强力驱动
Strongly Powered by AbleSci AI