生物地球化学循环
环境科学
土壤有机质
含水量
土壤科学
土壤水分
有机质
土壤碳
自行车
生态系统
环境化学
化学
生态学
地质学
地理
考古
有机化学
生物
岩土工程
作者
Craig Rasmussen,Katherine Heckman,William R. Wieder,Marco Keiluweit,C. R. Lawrence,Asmeret Asefaw Berhe,Joseph C. Blankinship,Susan E. Crow,Jennifer L. Druhan,Caitlin Hicks Pries,E. Marín-Spiotta,Alain F. Plante,Christina Schädel,Joshua P. Schimel,Carlos A. Sierra,Aaron Thompson,Rota Wagai
出处
期刊:Biogeochemistry
[Springer Nature]
日期:2018-02-01
卷期号:137 (3): 297-306
被引量:585
标识
DOI:10.1007/s10533-018-0424-3
摘要
Improved quantification of the factors controlling soil organic matter (SOM) stabilization at continental to global scales is needed to inform projections of the largest actively cycling terrestrial carbon pool on Earth, and its response to environmental change. Biogeochemical models rely almost exclusively on clay content to modify rates of SOM turnover and fluxes of climate-active CO2 to the atmosphere. Emerging conceptual understanding, however, suggests other soil physicochemical properties may predict SOM stabilization better than clay content. We addressed this discrepancy by synthesizing data from over 5,500 soil profiles spanning continental scale environmental gradients. Here, we demonstrate that other physicochemical parameters are much stronger predictors of SOM content, with clay content having relatively little explanatory power. We show that exchangeable calcium strongly predicted SOM content in water-limited, alkaline soils, whereas with increasing moisture availability and acidity, iron- and aluminum-oxyhydroxides emerged as better predictors, demonstrating that the relative importance of SOM stabilization mechanisms scales with climate and acidity. These results highlight the urgent need to modify biogeochemical models to better reflect the role of soil physicochemical properties in SOM cycling.
科研通智能强力驱动
Strongly Powered by AbleSci AI