Integrating genomic data and pathological images to effectively predict breast cancer clinical outcome

乳腺癌 病态的 癌症 多核学习 计算机科学 生存分析 特征(语言学) 人工智能 机器学习 肿瘤科 医学 支持向量机 内科学 核方法 语言学 哲学
作者
Dongdong Sun,Ao Li,Bo Tang,Minghui Wang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:161: 45-53 被引量:104
标识
DOI:10.1016/j.cmpb.2018.04.008
摘要

Breast cancer is a leading cause of death from cancer for females. The high mortality rate of breast cancer is largely due to the complexity among invasive breast cancer and its significantly varied clinical outcomes. Therefore, improving the accuracy of breast cancer survival prediction has important significance and becomes one of the major research areas. Nowadays many computational models have been proposed for breast cancer survival prediction, however, most of them generate the predictive models by employing only the genomic data information and few of them consider the complementary information from pathological images. In our study, we introduce a novel method called GPMKL based on multiple kernel learning (MKL), which efficiently employs heterogeneous information containing genomic data (gene expression, copy number alteration, gene methylation, protein expression) and pathological images. With above heterogeneous features, GPMKL is proposed to execute feature fusion which is embedded in breast cancer classification. Performance analysis of the GPMKL model indicates that the pathological image information plays a critical part in accurately predicting the survival time of breast cancer patients. Furthermore, the proposed method is compared with other existing breast cancer survival prediction methods, and the results demonstrate that the proposed framework with pathological images performs remarkably better than the existing survival prediction methods. All results performed in our study suggest that the usefulness and superiority of GPMKL in predicting human breast cancer survival.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无忧发布了新的文献求助10
1秒前
所所应助LDL采纳,获得10
1秒前
2秒前
2秒前
朱先生发布了新的文献求助10
2秒前
大气的苠发布了新的文献求助10
3秒前
3秒前
酷波er应助开心采纳,获得10
3秒前
4秒前
Jasper应助悲凉的艳采纳,获得10
4秒前
科研通AI6应助114514采纳,获得10
5秒前
李柯莹发布了新的文献求助10
5秒前
5秒前
rover完成签到,获得积分10
5秒前
6秒前
夕晴发布了新的文献求助100
7秒前
Beebee24完成签到,获得积分10
7秒前
8秒前
虎牙发布了新的文献求助10
8秒前
完美世界应助六个大洋采纳,获得10
9秒前
10秒前
CipherSage应助小小采纳,获得10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
12秒前
椰椰鲨发布了新的文献求助10
12秒前
三岁完成签到,获得积分10
13秒前
小熊饼干发布了新的文献求助10
13秒前
张虹完成签到,获得积分10
14秒前
烂漫的易真完成签到,获得积分10
14秒前
悲凉的艳发布了新的文献求助10
15秒前
打工人完成签到,获得积分10
15秒前
15秒前
MiRoRo发布了新的文献求助10
15秒前
科研小白发布了新的文献求助10
16秒前
16秒前
18秒前
南韵发布了新的文献求助20
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
A Case Study on Hotels as Noncongregate Emergency Living Accommodations for Returning Citizens 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5017581
求助须知:如何正确求助?哪些是违规求助? 4257160
关于积分的说明 13267994
捐赠科研通 4061491
什么是DOI,文献DOI怎么找? 2221358
邀请新用户注册赠送积分活动 1230610
关于科研通互助平台的介绍 1153234