Integrating genomic data and pathological images to effectively predict breast cancer clinical outcome

乳腺癌 病态的 癌症 多核学习 计算机科学 生存分析 特征(语言学) 人工智能 机器学习 医学 支持向量机 内科学 核方法 语言学 哲学
作者
Dongdong Sun,Ao Li,Bo Tang,Minghui Wang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:161: 45-53 被引量:86
标识
DOI:10.1016/j.cmpb.2018.04.008
摘要

Breast cancer is a leading cause of death from cancer for females. The high mortality rate of breast cancer is largely due to the complexity among invasive breast cancer and its significantly varied clinical outcomes. Therefore, improving the accuracy of breast cancer survival prediction has important significance and becomes one of the major research areas. Nowadays many computational models have been proposed for breast cancer survival prediction, however, most of them generate the predictive models by employing only the genomic data information and few of them consider the complementary information from pathological images. In our study, we introduce a novel method called GPMKL based on multiple kernel learning (MKL), which efficiently employs heterogeneous information containing genomic data (gene expression, copy number alteration, gene methylation, protein expression) and pathological images. With above heterogeneous features, GPMKL is proposed to execute feature fusion which is embedded in breast cancer classification. Performance analysis of the GPMKL model indicates that the pathological image information plays a critical part in accurately predicting the survival time of breast cancer patients. Furthermore, the proposed method is compared with other existing breast cancer survival prediction methods, and the results demonstrate that the proposed framework with pathological images performs remarkably better than the existing survival prediction methods. All results performed in our study suggest that the usefulness and superiority of GPMKL in predicting human breast cancer survival.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
owoow发布了新的文献求助10
刚刚
hold完成签到,获得积分20
1秒前
坎坷完成签到,获得积分10
1秒前
2秒前
飘逸衫完成签到,获得积分10
3秒前
天天快乐应助科研通管家采纳,获得10
4秒前
坎坷发布了新的文献求助10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
genomed应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
美满的涔发布了新的文献求助10
5秒前
5秒前
6秒前
潇洒问玉完成签到,获得积分10
6秒前
领导范儿应助朴实香露采纳,获得10
6秒前
6秒前
7秒前
7秒前
恭喜发布了新的文献求助10
7秒前
hxscu完成签到 ,获得积分10
8秒前
忆晚枫完成签到,获得积分10
8秒前
摆渡人完成签到 ,获得积分10
9秒前
科研通AI2S应助张益维采纳,获得10
9秒前
Singularity应助东单的单车采纳,获得10
9秒前
Astro发布了新的文献求助20
10秒前
10秒前
10秒前
10秒前
ryt发布了新的文献求助10
11秒前
tzjstar发布了新的文献求助10
11秒前
13秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125118
求助须知:如何正确求助?哪些是违规求助? 2775421
关于积分的说明 7726646
捐赠科研通 2430997
什么是DOI,文献DOI怎么找? 1291569
科研通“疑难数据库(出版商)”最低求助积分说明 622188
版权声明 600352