Integrating genomic data and pathological images to effectively predict breast cancer clinical outcome

乳腺癌 病态的 癌症 多核学习 计算机科学 生存分析 特征(语言学) 人工智能 机器学习 肿瘤科 医学 支持向量机 内科学 核方法 语言学 哲学
作者
Dongdong Sun,Ao Li,Bo Tang,Minghui Wang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:161: 45-53 被引量:104
标识
DOI:10.1016/j.cmpb.2018.04.008
摘要

Breast cancer is a leading cause of death from cancer for females. The high mortality rate of breast cancer is largely due to the complexity among invasive breast cancer and its significantly varied clinical outcomes. Therefore, improving the accuracy of breast cancer survival prediction has important significance and becomes one of the major research areas. Nowadays many computational models have been proposed for breast cancer survival prediction, however, most of them generate the predictive models by employing only the genomic data information and few of them consider the complementary information from pathological images. In our study, we introduce a novel method called GPMKL based on multiple kernel learning (MKL), which efficiently employs heterogeneous information containing genomic data (gene expression, copy number alteration, gene methylation, protein expression) and pathological images. With above heterogeneous features, GPMKL is proposed to execute feature fusion which is embedded in breast cancer classification. Performance analysis of the GPMKL model indicates that the pathological image information plays a critical part in accurately predicting the survival time of breast cancer patients. Furthermore, the proposed method is compared with other existing breast cancer survival prediction methods, and the results demonstrate that the proposed framework with pathological images performs remarkably better than the existing survival prediction methods. All results performed in our study suggest that the usefulness and superiority of GPMKL in predicting human breast cancer survival.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小旋风发布了新的文献求助20
1秒前
2秒前
zyb发布了新的文献求助10
2秒前
乐乐应助橙色采纳,获得10
2秒前
zzzz应助晴烟ZYM采纳,获得30
3秒前
锥子完成签到,获得积分10
3秒前
4秒前
叶千一夜完成签到,获得积分10
5秒前
5秒前
rainbow发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
8秒前
游一发布了新的文献求助10
8秒前
1111发布了新的文献求助10
9秒前
科研通AI5应助络绎采纳,获得10
9秒前
9秒前
oldblack发布了新的文献求助10
9秒前
帅哥吴克发布了新的文献求助20
10秒前
丘比特应助asdfghjkl采纳,获得10
10秒前
坏坏的快乐完成签到,获得积分10
10秒前
欣喜的秋灵完成签到,获得积分10
10秒前
FashionBoy应助wys采纳,获得10
11秒前
姐姐完成签到,获得积分20
11秒前
1177发布了新的文献求助10
12秒前
JingyuHuang发布了新的文献求助10
12秒前
zm发布了新的文献求助10
12秒前
13秒前
chenhoe1212完成签到,获得积分10
14秒前
彭于晏应助tanglu采纳,获得10
14秒前
weng完成签到,获得积分10
14秒前
Zjx发布了新的文献求助10
15秒前
jenningseastera应助呐呐采纳,获得10
15秒前
Jasper应助喜悦的秋柔采纳,获得10
17秒前
kksk发布了新的文献求助20
17秒前
fanfan完成签到 ,获得积分10
17秒前
kk完成签到,获得积分10
17秒前
caltrate515完成签到,获得积分10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992518
求助须知:如何正确求助?哪些是违规求助? 3533486
关于积分的说明 11262567
捐赠科研通 3273054
什么是DOI,文献DOI怎么找? 1805922
邀请新用户注册赠送积分活动 882858
科研通“疑难数据库(出版商)”最低求助积分说明 809496