A computerized method for evaluating scoliotic deformities using elliptical pattern recognition in X-ray spine images

椭圆 脊柱侧凸 质心 人工智能 脊柱弯曲 曲率 计算机科学 畸形 计算机视觉 数学 柯布角 医学 几何学 放射科 外科
作者
Alan Petrônio Pinheiro,Júlio Cézar Coelho,Antônio Cláudio Paschoarelli Veiga,Tomaž Vrtovec
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:161: 85-92 被引量:5
标识
DOI:10.1016/j.cmpb.2018.04.015
摘要

Several studies have evaluated the reproducibility of the Cobb angle for measuring the degree of scoliotic deformities from X-ray spine images, and proposed different geometric models for describing the spinal curvature. The ellipse was shown to be an adequate geometric form, but was not yet applied for the identification and quantification of scoliotic curvatures. The purpose of this study is therefore to propose and validate a novel computerized methodology for the detection of elliptical patterns from X-ray images to evaluate the extent of the underlying scoliotic deformity. For anteroposterior each X-ray spine image, the spine curve is first reconstructed from vertebral centroids. The ellipse that best fits to the obtained spine curve is the found within a least square and genetic algorithm optimization framework. The geometric parameters of the resulting best fit ellipse are finally used to define an index that quantifies the spinal curvature. The proposed methodology was validated on three synthetic images and then successfully applied to 20 clinical anteroposterior X-ray spine images of patients with a different degree of scoliotic deformity, with the resulting maximal relative error of 3% for the synthetic images and an overall error of 0.5 ± 0.4 mm (mean ± standard deviation) for the clinical cases. The results indicate that the proposed computerized methodology is able to reliably reproduce scoliotic curvatures using the geometric parameters of the underlying ellipses. In comparison to conventional approaches, the proposed methodology potentially produces less errors, requires a relatively low observer interaction, takes into account all vertebrae within the observed scoliotic deformity, and allows for both qualitative and quantitative evaluations that may complement the diagnosis, study and treatment of scoliosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
可爱的函函应助渭水飞熊采纳,获得30
4秒前
9秒前
专注的念桃完成签到,获得积分10
11秒前
风趣的芒果完成签到,获得积分10
11秒前
15秒前
c1302128340完成签到,获得积分10
17秒前
JamesPei应助忐忑的红牛采纳,获得10
19秒前
大个应助Tsuki采纳,获得10
19秒前
DoctorXu完成签到,获得积分10
20秒前
嘻嘻完成签到,获得积分10
22秒前
Garnieta完成签到,获得积分10
23秒前
活力白亦完成签到 ,获得积分10
24秒前
Cwin完成签到,获得积分10
24秒前
25秒前
酷酷的麦片完成签到,获得积分10
25秒前
26秒前
科研通AI6应助令宏采纳,获得10
27秒前
BowieHuang应助科研通管家采纳,获得10
29秒前
orixero应助科研通管家采纳,获得10
29秒前
ding应助科研通管家采纳,获得10
29秒前
桐桐应助科研通管家采纳,获得10
29秒前
29秒前
英吉利25发布了新的文献求助30
30秒前
31秒前
kingwill应助心灵美的不愁采纳,获得20
33秒前
33秒前
35秒前
36秒前
赘婿应助pangkuan采纳,获得10
38秒前
jiajx21发布了新的文献求助10
38秒前
39秒前
liuzy完成签到,获得积分10
39秒前
chris完成签到,获得积分10
42秒前
心灵美的不愁给心灵美的不愁的求助进行了留言
43秒前
田様应助鱼子不吃饭采纳,获得10
43秒前
novQ发布了新的文献求助10
44秒前
烟花应助norville采纳,获得10
46秒前
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563647
求助须知:如何正确求助?哪些是违规求助? 4648551
关于积分的说明 14685308
捐赠科研通 4590492
什么是DOI,文献DOI怎么找? 2518611
邀请新用户注册赠送积分活动 1491196
关于科研通互助平台的介绍 1462478