A computerized method for evaluating scoliotic deformities using elliptical pattern recognition in X-ray spine images

椭圆 脊柱侧凸 质心 人工智能 脊柱弯曲 曲率 计算机科学 畸形 计算机视觉 数学 柯布角 医学 几何学 放射科 外科
作者
Alan Petrônio Pinheiro,Júlio Cézar Coelho,Antônio Cláudio Paschoarelli Veiga,Tomaž Vrtovec
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:161: 85-92 被引量:5
标识
DOI:10.1016/j.cmpb.2018.04.015
摘要

Several studies have evaluated the reproducibility of the Cobb angle for measuring the degree of scoliotic deformities from X-ray spine images, and proposed different geometric models for describing the spinal curvature. The ellipse was shown to be an adequate geometric form, but was not yet applied for the identification and quantification of scoliotic curvatures. The purpose of this study is therefore to propose and validate a novel computerized methodology for the detection of elliptical patterns from X-ray images to evaluate the extent of the underlying scoliotic deformity. For anteroposterior each X-ray spine image, the spine curve is first reconstructed from vertebral centroids. The ellipse that best fits to the obtained spine curve is the found within a least square and genetic algorithm optimization framework. The geometric parameters of the resulting best fit ellipse are finally used to define an index that quantifies the spinal curvature. The proposed methodology was validated on three synthetic images and then successfully applied to 20 clinical anteroposterior X-ray spine images of patients with a different degree of scoliotic deformity, with the resulting maximal relative error of 3% for the synthetic images and an overall error of 0.5 ± 0.4 mm (mean ± standard deviation) for the clinical cases. The results indicate that the proposed computerized methodology is able to reliably reproduce scoliotic curvatures using the geometric parameters of the underlying ellipses. In comparison to conventional approaches, the proposed methodology potentially produces less errors, requires a relatively low observer interaction, takes into account all vertebrae within the observed scoliotic deformity, and allows for both qualitative and quantitative evaluations that may complement the diagnosis, study and treatment of scoliosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
sheep完成签到,获得积分10
1秒前
Desheng发布了新的文献求助10
2秒前
慕青应助李逍遥采纳,获得10
2秒前
星辰完成签到 ,获得积分10
2秒前
彭于晏应助江湖护卫舰采纳,获得10
3秒前
领导范儿应助xia采纳,获得10
3秒前
penghui完成签到,获得积分10
3秒前
4秒前
ZYL发布了新的文献求助10
4秒前
4秒前
张伟完成签到,获得积分10
4秒前
321发布了新的文献求助10
5秒前
活力小夏发布了新的文献求助10
6秒前
深情安青应助yuna采纳,获得10
6秒前
6秒前
赘婿应助michael采纳,获得30
6秒前
7秒前
星辰关注了科研通微信公众号
7秒前
7秒前
7秒前
踏雾发布了新的文献求助10
7秒前
7秒前
8秒前
9秒前
ZYL完成签到,获得积分10
9秒前
10秒前
Desheng完成签到,获得积分10
10秒前
FashionBoy应助无私的糖豆采纳,获得30
10秒前
10秒前
abab完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
领导范儿应助知性的安波采纳,获得10
11秒前
Duckseid发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667199
求助须知:如何正确求助?哪些是违规求助? 4884533
关于积分的说明 15119115
捐赠科研通 4826074
什么是DOI,文献DOI怎么找? 2583722
邀请新用户注册赠送积分活动 1537874
关于科研通互助平台的介绍 1496008