A computerized method for evaluating scoliotic deformities using elliptical pattern recognition in X-ray spine images

椭圆 脊柱侧凸 质心 人工智能 脊柱弯曲 曲率 计算机科学 畸形 计算机视觉 数学 柯布角 医学 几何学 放射科 外科
作者
Alan Petrônio Pinheiro,Júlio Cézar Coelho,Antônio Cláudio Paschoarelli Veiga,Tomaž Vrtovec
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:161: 85-92 被引量:5
标识
DOI:10.1016/j.cmpb.2018.04.015
摘要

Several studies have evaluated the reproducibility of the Cobb angle for measuring the degree of scoliotic deformities from X-ray spine images, and proposed different geometric models for describing the spinal curvature. The ellipse was shown to be an adequate geometric form, but was not yet applied for the identification and quantification of scoliotic curvatures. The purpose of this study is therefore to propose and validate a novel computerized methodology for the detection of elliptical patterns from X-ray images to evaluate the extent of the underlying scoliotic deformity. For anteroposterior each X-ray spine image, the spine curve is first reconstructed from vertebral centroids. The ellipse that best fits to the obtained spine curve is the found within a least square and genetic algorithm optimization framework. The geometric parameters of the resulting best fit ellipse are finally used to define an index that quantifies the spinal curvature. The proposed methodology was validated on three synthetic images and then successfully applied to 20 clinical anteroposterior X-ray spine images of patients with a different degree of scoliotic deformity, with the resulting maximal relative error of 3% for the synthetic images and an overall error of 0.5 ± 0.4 mm (mean ± standard deviation) for the clinical cases. The results indicate that the proposed computerized methodology is able to reliably reproduce scoliotic curvatures using the geometric parameters of the underlying ellipses. In comparison to conventional approaches, the proposed methodology potentially produces less errors, requires a relatively low observer interaction, takes into account all vertebrae within the observed scoliotic deformity, and allows for both qualitative and quantitative evaluations that may complement the diagnosis, study and treatment of scoliosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王利宾完成签到,获得积分10
刚刚
马铃薯完成签到,获得积分10
1秒前
1秒前
2秒前
liam完成签到,获得积分10
2秒前
酷酷世德发布了新的文献求助10
2秒前
勤奋的雪冥完成签到,获得积分10
2秒前
张英俊发布了新的文献求助10
2秒前
领悟完成签到,获得积分10
2秒前
骆白容发布了新的文献求助10
2秒前
HHHAN完成签到,获得积分10
2秒前
2秒前
3秒前
yao发布了新的文献求助10
3秒前
天黑黑发布了新的文献求助10
3秒前
Rong发布了新的文献求助10
3秒前
qu蛐完成签到 ,获得积分10
4秒前
4秒前
小鬼完成签到,获得积分20
4秒前
gddaebh完成签到,获得积分10
4秒前
breaddog完成签到,获得积分10
4秒前
shuyi完成签到 ,获得积分10
5秒前
5秒前
中央戏精学院完成签到,获得积分10
5秒前
5秒前
叶。。。发布了新的文献求助10
6秒前
6秒前
共享精神应助lw采纳,获得10
7秒前
UPUP完成签到,获得积分10
7秒前
华仔应助学习中采纳,获得10
7秒前
大宝完成签到,获得积分10
8秒前
qwe完成签到,获得积分10
8秒前
zzzq完成签到,获得积分0
8秒前
abc完成签到,获得积分10
8秒前
清墨漓烟发布了新的文献求助10
9秒前
9秒前
冰红粥完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
白也也也完成签到,获得积分10
9秒前
jjjj721完成签到,获得积分10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953748
求助须知:如何正确求助?哪些是违规求助? 3499604
关于积分的说明 11096363
捐赠科研通 3230143
什么是DOI,文献DOI怎么找? 1785894
邀请新用户注册赠送积分活动 869656
科研通“疑难数据库(出版商)”最低求助积分说明 801498