A computerized method for evaluating scoliotic deformities using elliptical pattern recognition in X-ray spine images

椭圆 脊柱侧凸 质心 人工智能 脊柱弯曲 曲率 计算机科学 畸形 计算机视觉 数学 柯布角 医学 几何学 放射科 外科
作者
Alan Petrônio Pinheiro,Júlio Cézar Coelho,Antônio Cláudio Paschoarelli Veiga,Tomaž Vrtovec
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:161: 85-92 被引量:5
标识
DOI:10.1016/j.cmpb.2018.04.015
摘要

Several studies have evaluated the reproducibility of the Cobb angle for measuring the degree of scoliotic deformities from X-ray spine images, and proposed different geometric models for describing the spinal curvature. The ellipse was shown to be an adequate geometric form, but was not yet applied for the identification and quantification of scoliotic curvatures. The purpose of this study is therefore to propose and validate a novel computerized methodology for the detection of elliptical patterns from X-ray images to evaluate the extent of the underlying scoliotic deformity. For anteroposterior each X-ray spine image, the spine curve is first reconstructed from vertebral centroids. The ellipse that best fits to the obtained spine curve is the found within a least square and genetic algorithm optimization framework. The geometric parameters of the resulting best fit ellipse are finally used to define an index that quantifies the spinal curvature. The proposed methodology was validated on three synthetic images and then successfully applied to 20 clinical anteroposterior X-ray spine images of patients with a different degree of scoliotic deformity, with the resulting maximal relative error of 3% for the synthetic images and an overall error of 0.5 ± 0.4 mm (mean ± standard deviation) for the clinical cases. The results indicate that the proposed computerized methodology is able to reliably reproduce scoliotic curvatures using the geometric parameters of the underlying ellipses. In comparison to conventional approaches, the proposed methodology potentially produces less errors, requires a relatively low observer interaction, takes into account all vertebrae within the observed scoliotic deformity, and allows for both qualitative and quantitative evaluations that may complement the diagnosis, study and treatment of scoliosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研友_VZG7GZ应助云渺采纳,获得10
1秒前
ding应助PhDL1采纳,获得10
1秒前
dizzyout发布了新的文献求助10
2秒前
2秒前
闪闪柔发布了新的文献求助10
4秒前
5秒前
科研通AI6应助zxxx采纳,获得30
5秒前
包容的绿蕊完成签到,获得积分10
5秒前
忧郁的玉米投手完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
可靠代丝发布了新的文献求助10
7秒前
梨花雨凉发布了新的文献求助10
7秒前
7秒前
8秒前
亓大大发布了新的文献求助10
8秒前
9秒前
阿飞发布了新的文献求助10
9秒前
yanting完成签到,获得积分10
10秒前
12秒前
12秒前
liang白开完成签到,获得积分10
12秒前
科研通AI6应助加菲猫采纳,获得10
13秒前
彭于晏应助猪猪hero采纳,获得10
14秒前
r41r32完成签到 ,获得积分10
14秒前
15秒前
Spike发布了新的文献求助10
16秒前
凌小满发布了新的文献求助60
17秒前
永字号发布了新的文献求助10
17秒前
雪白的真完成签到,获得积分20
18秒前
18秒前
风中无血发布了新的文献求助10
18秒前
刘子豪发布了新的文献求助10
18秒前
闪闪柔完成签到,获得积分10
21秒前
璐璐完成签到,获得积分10
21秒前
22秒前
22秒前
豆儿嘚小豆儿完成签到,获得积分10
23秒前
妮妮完成签到 ,获得积分10
23秒前
李园园完成签到 ,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465399
求助须知:如何正确求助?哪些是违规求助? 4569719
关于积分的说明 14320701
捐赠科研通 4496152
什么是DOI,文献DOI怎么找? 2463156
邀请新用户注册赠送积分活动 1452110
关于科研通互助平台的介绍 1427270