亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A computerized method for evaluating scoliotic deformities using elliptical pattern recognition in X-ray spine images

椭圆 脊柱侧凸 质心 人工智能 脊柱弯曲 曲率 计算机科学 畸形 计算机视觉 数学 柯布角 医学 几何学 放射科 外科
作者
Alan Petrônio Pinheiro,Júlio Cézar Coelho,Antônio Cláudio Paschoarelli Veiga,Tomaž Vrtovec
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:161: 85-92 被引量:5
标识
DOI:10.1016/j.cmpb.2018.04.015
摘要

Several studies have evaluated the reproducibility of the Cobb angle for measuring the degree of scoliotic deformities from X-ray spine images, and proposed different geometric models for describing the spinal curvature. The ellipse was shown to be an adequate geometric form, but was not yet applied for the identification and quantification of scoliotic curvatures. The purpose of this study is therefore to propose and validate a novel computerized methodology for the detection of elliptical patterns from X-ray images to evaluate the extent of the underlying scoliotic deformity. For anteroposterior each X-ray spine image, the spine curve is first reconstructed from vertebral centroids. The ellipse that best fits to the obtained spine curve is the found within a least square and genetic algorithm optimization framework. The geometric parameters of the resulting best fit ellipse are finally used to define an index that quantifies the spinal curvature. The proposed methodology was validated on three synthetic images and then successfully applied to 20 clinical anteroposterior X-ray spine images of patients with a different degree of scoliotic deformity, with the resulting maximal relative error of 3% for the synthetic images and an overall error of 0.5 ± 0.4 mm (mean ± standard deviation) for the clinical cases. The results indicate that the proposed computerized methodology is able to reliably reproduce scoliotic curvatures using the geometric parameters of the underlying ellipses. In comparison to conventional approaches, the proposed methodology potentially produces less errors, requires a relatively low observer interaction, takes into account all vertebrae within the observed scoliotic deformity, and allows for both qualitative and quantitative evaluations that may complement the diagnosis, study and treatment of scoliosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6应助司连喜采纳,获得10
2秒前
pyl发布了新的文献求助10
3秒前
Sharin发布了新的文献求助10
6秒前
科研通AI6应助冯宇采纳,获得10
7秒前
7秒前
sss2021完成签到,获得积分10
7秒前
糟糕的学姐完成签到 ,获得积分10
10秒前
11秒前
西蓝花战士完成签到 ,获得积分10
12秒前
16秒前
18秒前
美丽的依霜完成签到 ,获得积分10
19秒前
20秒前
rui发布了新的文献求助10
20秒前
Panther完成签到,获得积分10
21秒前
lujiajia完成签到,获得积分10
22秒前
小明月完成签到,获得积分10
23秒前
Sharin完成签到,获得积分20
23秒前
xiaowang完成签到 ,获得积分10
23秒前
科研通AI6应助乐观凝荷采纳,获得10
25秒前
25秒前
27秒前
rui完成签到,获得积分10
30秒前
32秒前
Xujiamin发布了新的文献求助10
33秒前
miki完成签到 ,获得积分10
33秒前
fafa完成签到,获得积分10
39秒前
胡美玲完成签到,获得积分20
43秒前
Xujiamin完成签到,获得积分10
44秒前
50秒前
52秒前
Caixtmx完成签到 ,获得积分10
53秒前
胡林发布了新的文献求助10
54秒前
54秒前
呵呵发布了新的文献求助10
55秒前
刘瀚臻完成签到,获得积分10
55秒前
月亮完成签到 ,获得积分10
55秒前
刘瀚臻发布了新的文献求助10
58秒前
moyu123发布了新的文献求助10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
4th edition, Qualitative Data Analysis with NVivo Jenine Beekhuyzen, Pat Bazeley 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5611827
求助须知:如何正确求助?哪些是违规求助? 4695978
关于积分的说明 14890100
捐赠科研通 4727293
什么是DOI,文献DOI怎么找? 2545926
邀请新用户注册赠送积分活动 1510337
关于科研通互助平台的介绍 1473236