A computerized method for evaluating scoliotic deformities using elliptical pattern recognition in X-ray spine images

椭圆 脊柱侧凸 质心 人工智能 脊柱弯曲 曲率 计算机科学 畸形 计算机视觉 数学 柯布角 医学 几何学 放射科 外科
作者
Alan Petrônio Pinheiro,Júlio Cézar Coelho,Antônio Cláudio Paschoarelli Veiga,Tomaž Vrtovec
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:161: 85-92 被引量:5
标识
DOI:10.1016/j.cmpb.2018.04.015
摘要

Several studies have evaluated the reproducibility of the Cobb angle for measuring the degree of scoliotic deformities from X-ray spine images, and proposed different geometric models for describing the spinal curvature. The ellipse was shown to be an adequate geometric form, but was not yet applied for the identification and quantification of scoliotic curvatures. The purpose of this study is therefore to propose and validate a novel computerized methodology for the detection of elliptical patterns from X-ray images to evaluate the extent of the underlying scoliotic deformity. For anteroposterior each X-ray spine image, the spine curve is first reconstructed from vertebral centroids. The ellipse that best fits to the obtained spine curve is the found within a least square and genetic algorithm optimization framework. The geometric parameters of the resulting best fit ellipse are finally used to define an index that quantifies the spinal curvature. The proposed methodology was validated on three synthetic images and then successfully applied to 20 clinical anteroposterior X-ray spine images of patients with a different degree of scoliotic deformity, with the resulting maximal relative error of 3% for the synthetic images and an overall error of 0.5 ± 0.4 mm (mean ± standard deviation) for the clinical cases. The results indicate that the proposed computerized methodology is able to reliably reproduce scoliotic curvatures using the geometric parameters of the underlying ellipses. In comparison to conventional approaches, the proposed methodology potentially produces less errors, requires a relatively low observer interaction, takes into account all vertebrae within the observed scoliotic deformity, and allows for both qualitative and quantitative evaluations that may complement the diagnosis, study and treatment of scoliosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
无花果应助caijiaqi采纳,获得10
1秒前
何东旭发布了新的文献求助10
1秒前
葫芦冰糖应助kf033采纳,获得20
1秒前
4秒前
4秒前
上官若男应助谪旅客采纳,获得10
5秒前
zhouzheyu完成签到,获得积分10
5秒前
5秒前
5秒前
狂野若云发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
7秒前
田様应助KM采纳,获得10
7秒前
8秒前
小月亮完成签到,获得积分10
9秒前
华仔应助眯眯眼的板栗采纳,获得10
9秒前
10秒前
10秒前
10秒前
11秒前
桐桐应助zhangzhirong采纳,获得10
11秒前
蓝天发布了新的文献求助10
11秒前
11秒前
狂野若云完成签到,获得积分20
11秒前
11秒前
12秒前
LG发布了新的文献求助30
12秒前
温谷完成签到 ,获得积分10
12秒前
san发布了新的文献求助10
12秒前
13秒前
mistletoe完成签到,获得积分10
13秒前
王盼盼发布了新的文献求助10
13秒前
13秒前
13秒前
科研通AI6.1应助积极涵阳采纳,获得10
14秒前
befond完成签到,获得积分10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743404
求助须知:如何正确求助?哪些是违规求助? 5413822
关于积分的说明 15347458
捐赠科研通 4884191
什么是DOI,文献DOI怎么找? 2625636
邀请新用户注册赠送积分活动 1574492
关于科研通互助平台的介绍 1531400