已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A computerized method for evaluating scoliotic deformities using elliptical pattern recognition in X-ray spine images

椭圆 脊柱侧凸 质心 人工智能 脊柱弯曲 曲率 计算机科学 畸形 计算机视觉 数学 柯布角 医学 几何学 放射科 外科
作者
Alan Petrônio Pinheiro,Júlio Cézar Coelho,Antônio Cláudio Paschoarelli Veiga,Tomaž Vrtovec
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:161: 85-92 被引量:5
标识
DOI:10.1016/j.cmpb.2018.04.015
摘要

Several studies have evaluated the reproducibility of the Cobb angle for measuring the degree of scoliotic deformities from X-ray spine images, and proposed different geometric models for describing the spinal curvature. The ellipse was shown to be an adequate geometric form, but was not yet applied for the identification and quantification of scoliotic curvatures. The purpose of this study is therefore to propose and validate a novel computerized methodology for the detection of elliptical patterns from X-ray images to evaluate the extent of the underlying scoliotic deformity. For anteroposterior each X-ray spine image, the spine curve is first reconstructed from vertebral centroids. The ellipse that best fits to the obtained spine curve is the found within a least square and genetic algorithm optimization framework. The geometric parameters of the resulting best fit ellipse are finally used to define an index that quantifies the spinal curvature. The proposed methodology was validated on three synthetic images and then successfully applied to 20 clinical anteroposterior X-ray spine images of patients with a different degree of scoliotic deformity, with the resulting maximal relative error of 3% for the synthetic images and an overall error of 0.5 ± 0.4 mm (mean ± standard deviation) for the clinical cases. The results indicate that the proposed computerized methodology is able to reliably reproduce scoliotic curvatures using the geometric parameters of the underlying ellipses. In comparison to conventional approaches, the proposed methodology potentially produces less errors, requires a relatively low observer interaction, takes into account all vertebrae within the observed scoliotic deformity, and allows for both qualitative and quantitative evaluations that may complement the diagnosis, study and treatment of scoliosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kento应助科研通管家采纳,获得150
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得50
5秒前
情怀应助科研通管家采纳,获得30
5秒前
大模型应助科研通管家采纳,获得10
6秒前
Atom应助科研通管家采纳,获得10
6秒前
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
假装有昵称完成签到 ,获得积分10
10秒前
叶一只完成签到,获得积分10
13秒前
学术大拿完成签到 ,获得积分10
13秒前
土豪的紫荷完成签到 ,获得积分10
13秒前
16秒前
学术大拿关注了科研通微信公众号
18秒前
今后应助鱼yu采纳,获得10
18秒前
邋遢大王发布了新的文献求助10
19秒前
加缪应助靓丽的大娘采纳,获得10
21秒前
千初完成签到,获得积分10
22秒前
23秒前
爱吃烧鸭粉的小哥哥完成签到 ,获得积分10
28秒前
29秒前
45秒前
英姑应助Jemery采纳,获得20
46秒前
JackLiu完成签到,获得积分10
47秒前
amiee完成签到,获得积分20
47秒前
未晞发布了新的文献求助10
48秒前
拼搏向上发布了新的文献求助10
49秒前
英勇醉山发布了新的文献求助10
49秒前
研友_尧尧和平Zza9Kn完成签到,获得积分20
50秒前
Olivia完成签到 ,获得积分10
50秒前
从容甜瓜完成签到 ,获得积分10
53秒前
你今天学了多少完成签到 ,获得积分10
54秒前
欢喜的代丝完成签到,获得积分10
54秒前
55秒前
58秒前
传奇3应助英勇醉山采纳,获得10
58秒前
共享精神应助丫丫采纳,获得30
59秒前
59秒前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4909197
求助须知:如何正确求助?哪些是违规求助? 4185703
关于积分的说明 12998175
捐赠科研通 3952537
什么是DOI,文献DOI怎么找? 2167595
邀请新用户注册赠送积分活动 1186100
关于科研通互助平台的介绍 1092682