医学
清脆的
基因组编辑
基因
遗传学
计算生物学
生物
作者
Nelly M. Cruz,Benjamin Freedman
标识
DOI:10.1053/j.ajkd.2018.02.347
摘要
CRISPR is a nuclease guidance system that enables rapid and efficient gene editing of specific DNA sequences within genomes. We review applications of CRISPR for the study and treatment of kidney disease. CRISPR enables functional experiments in cell lines and model organisms to validate candidate genes arising from genetic studies. CRISPR has furthermore been used to establish the first models of genetic disease in human kidney organoids derived from pluripotent stem cells. These gene-edited organoids are providing new insight into the cellular mechanisms of polycystic kidney disease and nephrotic syndrome. CRISPR-engineered cell therapies are currently in clinical trials for cancers and immunologic syndromes, an approach that may be applicable to inflammatory conditions such as lupus nephritis. Use of CRISPR in large domestic species such as pigs raises the possibility of farming kidneys for transplantation to alleviate the shortage of donor organs. However, significant challenges remain, including how to effectively deliver CRISPR to kidneys and how to control gene editing events within the genome. Thorough testing of CRISPR in preclinical models will be critical to the safe and efficacious translation of this powerful young technology into therapies. CRISPR is a nuclease guidance system that enables rapid and efficient gene editing of specific DNA sequences within genomes. We review applications of CRISPR for the study and treatment of kidney disease. CRISPR enables functional experiments in cell lines and model organisms to validate candidate genes arising from genetic studies. CRISPR has furthermore been used to establish the first models of genetic disease in human kidney organoids derived from pluripotent stem cells. These gene-edited organoids are providing new insight into the cellular mechanisms of polycystic kidney disease and nephrotic syndrome. CRISPR-engineered cell therapies are currently in clinical trials for cancers and immunologic syndromes, an approach that may be applicable to inflammatory conditions such as lupus nephritis. Use of CRISPR in large domestic species such as pigs raises the possibility of farming kidneys for transplantation to alleviate the shortage of donor organs. However, significant challenges remain, including how to effectively deliver CRISPR to kidneys and how to control gene editing events within the genome. Thorough testing of CRISPR in preclinical models will be critical to the safe and efficacious translation of this powerful young technology into therapies.
科研通智能强力驱动
Strongly Powered by AbleSci AI