Non-intrusive load monitoring by using active and reactive power in additive Factorial Hidden Markov Models

隐马尔可夫模型 二元分析 最大后验估计 交流电源 计算机科学 功率(物理) 度量(数据仓库) 阶乘 算法 数学 数学优化 人工智能 机器学习 数据挖掘 统计 最大似然 数学分析 物理 量子力学
作者
Roberto Bonfigli,Emanuele Principi,Marco Fagiani,Marco Severini,Stefano Squartini,Francesco Piazza
出处
期刊:Applied Energy [Elsevier]
卷期号:208: 1590-1607 被引量:183
标识
DOI:10.1016/j.apenergy.2017.08.203
摘要

Non-intrusive load monitoring (NILM) is the task of determining the appliances individual contributions to the aggregate power consumption by using a set of electrical parameters measured at a single metering point. NILM allows to provide detailed consumption information to the users, that induces them to modify their habits towards a wiser use of the electrical energy. This paper proposes a NILM algorithm based on the joint use of active and reactive power in the Additive Factorial Hidden Markov Models framework. In particular, in the proposed approach, the appliance model is represented by a bivariate Hidden Markov Model whose emitted symbols are the joint active-reactive power signals. The disaggregation is performed by means of an alternative formulation of the Additive Factorial Approximate Maximum a Posteriori (AFAMAP) algorithm for dealing with the bivariate HMM models. The proposed solution has been compared to the original AFAMAP algorithm based on the active power only and to the seminal approach proposed by Hart (1992), based on finite state machine appliance models and which employs both the active and reactive power. Hart's algorithm has been improved for handling the occurrence of multiple solutions by means of a Maximum A Posteriori technique (MAP). The experiments have been conducted on the AMPds dataset in noised and denoised conditions and the performance evaluated by using the F1-Measure and the normalized disaggregation metrics. In terms of F1-Measure, the results showed that the proposed approach outperforms AFAMAP, Hart's algorithm, and Hart's with MAP respectively by +14.9%, +21.8%, and +2.5% in the 6 appliances denoised case study. In the 6 appliances noised case study, the relative performance improvement is +25.5%, +51.1%, and +6.7%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多情怜蕾完成签到,获得积分10
1秒前
1秒前
AD发布了新的文献求助10
2秒前
谢朝邦发布了新的文献求助10
2秒前
科研通AI5应助玲珑油豆腐采纳,获得10
2秒前
2秒前
wjh发布了新的文献求助10
2秒前
Lucky完成签到,获得积分10
3秒前
谨慎涵柏发布了新的文献求助10
3秒前
SciGPT应助心灵美发卡采纳,获得10
3秒前
彩色的蓝天完成签到,获得积分10
3秒前
hbb发布了新的文献求助10
3秒前
3137874883发布了新的文献求助10
5秒前
蒋若风发布了新的文献求助10
5秒前
123完成签到,获得积分10
5秒前
狗剩子完成签到,获得积分10
5秒前
Lvj完成签到,获得积分10
6秒前
bkagyin应助马保国123采纳,获得10
6秒前
6秒前
7秒前
大个应助乐观的幼珊采纳,获得10
7秒前
7秒前
7秒前
7秒前
顺顺完成签到,获得积分10
9秒前
9秒前
小马甲应助a1oft采纳,获得10
9秒前
Keke完成签到,获得积分10
9秒前
10秒前
自然秋柳发布了新的文献求助10
10秒前
candy6663339完成签到,获得积分10
10秒前
weiwei完成签到,获得积分10
10秒前
大个应助苗条的山晴采纳,获得10
11秒前
努力发一区完成签到 ,获得积分0
11秒前
蒋时晏应助恶恶么v采纳,获得30
11秒前
12秒前
12秒前
gennp完成签到,获得积分10
12秒前
gg完成签到,获得积分10
12秒前
1111发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759