Non-intrusive load monitoring by using active and reactive power in additive Factorial Hidden Markov Models

隐马尔可夫模型 二元分析 最大后验估计 交流电源 计算机科学 功率(物理) 度量(数据仓库) 阶乘 算法 数学 数学优化 人工智能 机器学习 数据挖掘 统计 最大似然 量子力学 物理 数学分析
作者
Roberto Bonfigli,Emanuele Principi,Marco Fagiani,Marco Severini,Stefano Squartini,Francesco Piazza
出处
期刊:Applied Energy [Elsevier]
卷期号:208: 1590-1607 被引量:183
标识
DOI:10.1016/j.apenergy.2017.08.203
摘要

Non-intrusive load monitoring (NILM) is the task of determining the appliances individual contributions to the aggregate power consumption by using a set of electrical parameters measured at a single metering point. NILM allows to provide detailed consumption information to the users, that induces them to modify their habits towards a wiser use of the electrical energy. This paper proposes a NILM algorithm based on the joint use of active and reactive power in the Additive Factorial Hidden Markov Models framework. In particular, in the proposed approach, the appliance model is represented by a bivariate Hidden Markov Model whose emitted symbols are the joint active-reactive power signals. The disaggregation is performed by means of an alternative formulation of the Additive Factorial Approximate Maximum a Posteriori (AFAMAP) algorithm for dealing with the bivariate HMM models. The proposed solution has been compared to the original AFAMAP algorithm based on the active power only and to the seminal approach proposed by Hart (1992), based on finite state machine appliance models and which employs both the active and reactive power. Hart's algorithm has been improved for handling the occurrence of multiple solutions by means of a Maximum A Posteriori technique (MAP). The experiments have been conducted on the AMPds dataset in noised and denoised conditions and the performance evaluated by using the F1-Measure and the normalized disaggregation metrics. In terms of F1-Measure, the results showed that the proposed approach outperforms AFAMAP, Hart's algorithm, and Hart's with MAP respectively by +14.9%, +21.8%, and +2.5% in the 6 appliances denoised case study. In the 6 appliances noised case study, the relative performance improvement is +25.5%, +51.1%, and +6.7%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活泼酸奶完成签到,获得积分10
刚刚
1秒前
1秒前
mixieer发布了新的文献求助10
2秒前
6秒前
渝安发布了新的文献求助10
6秒前
7秒前
llnysl完成签到 ,获得积分10
7秒前
smh完成签到,获得积分10
9秒前
11秒前
byyyy发布了新的文献求助10
13秒前
魔幻山芙发布了新的文献求助10
16秒前
红枫没有微雨怜完成签到 ,获得积分10
16秒前
17秒前
wangxc完成签到 ,获得积分10
19秒前
felicity完成签到 ,获得积分10
19秒前
汉堡包应助陈启10000采纳,获得10
20秒前
Wenpandaen发布了新的文献求助10
20秒前
漠漠完成签到 ,获得积分10
20秒前
小二郎应助云_123采纳,获得10
24秒前
pluto应助Seren采纳,获得50
25秒前
26秒前
27秒前
不配.应助Moonflower采纳,获得20
28秒前
felicia12138完成签到 ,获得积分10
29秒前
MEEW发布了新的文献求助10
29秒前
苹果书兰完成签到 ,获得积分10
31秒前
32秒前
34秒前
Zr完成签到,获得积分10
34秒前
慕青应助西门访天采纳,获得10
34秒前
CipherSage应助Luigi采纳,获得10
35秒前
Jun完成签到 ,获得积分10
35秒前
云_123发布了新的文献求助10
36秒前
lindsay完成签到,获得积分10
36秒前
完美世界应助长孙归尘采纳,获得10
37秒前
大个应助Wenpandaen采纳,获得10
41秒前
42秒前
CipherSage应助昏睡的朝雪采纳,获得10
42秒前
45秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134935
求助须知:如何正确求助?哪些是违规求助? 2785802
关于积分的说明 7774295
捐赠科研通 2441699
什么是DOI,文献DOI怎么找? 1298093
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825