Non-intrusive load monitoring by using active and reactive power in additive Factorial Hidden Markov Models

隐马尔可夫模型 二元分析 最大后验估计 交流电源 计算机科学 功率(物理) 度量(数据仓库) 阶乘 算法 数学 数学优化 人工智能 机器学习 数据挖掘 统计 最大似然 数学分析 物理 量子力学
作者
Roberto Bonfigli,Emanuele Principi,Marco Fagiani,Marco Severini,Stefano Squartini,Francesco Piazza
出处
期刊:Applied Energy [Elsevier]
卷期号:208: 1590-1607 被引量:183
标识
DOI:10.1016/j.apenergy.2017.08.203
摘要

Non-intrusive load monitoring (NILM) is the task of determining the appliances individual contributions to the aggregate power consumption by using a set of electrical parameters measured at a single metering point. NILM allows to provide detailed consumption information to the users, that induces them to modify their habits towards a wiser use of the electrical energy. This paper proposes a NILM algorithm based on the joint use of active and reactive power in the Additive Factorial Hidden Markov Models framework. In particular, in the proposed approach, the appliance model is represented by a bivariate Hidden Markov Model whose emitted symbols are the joint active-reactive power signals. The disaggregation is performed by means of an alternative formulation of the Additive Factorial Approximate Maximum a Posteriori (AFAMAP) algorithm for dealing with the bivariate HMM models. The proposed solution has been compared to the original AFAMAP algorithm based on the active power only and to the seminal approach proposed by Hart (1992), based on finite state machine appliance models and which employs both the active and reactive power. Hart's algorithm has been improved for handling the occurrence of multiple solutions by means of a Maximum A Posteriori technique (MAP). The experiments have been conducted on the AMPds dataset in noised and denoised conditions and the performance evaluated by using the F1-Measure and the normalized disaggregation metrics. In terms of F1-Measure, the results showed that the proposed approach outperforms AFAMAP, Hart's algorithm, and Hart's with MAP respectively by +14.9%, +21.8%, and +2.5% in the 6 appliances denoised case study. In the 6 appliances noised case study, the relative performance improvement is +25.5%, +51.1%, and +6.7%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助wyz采纳,获得10
1秒前
1秒前
2秒前
木子应助QSJ采纳,获得10
2秒前
nvger发布了新的文献求助10
3秒前
zhz完成签到,获得积分10
4秒前
健忘的灵凡完成签到,获得积分10
4秒前
研友_VZG7GZ应助waoller1采纳,获得10
4秒前
隐形曼青应助waoller1采纳,获得10
4秒前
秘密发布了新的文献求助10
5秒前
5秒前
wy.he应助iamnottingting采纳,获得20
5秒前
5秒前
yyy完成签到,获得积分10
5秒前
6秒前
读读读关注了科研通微信公众号
6秒前
慕青应助aming采纳,获得10
7秒前
7秒前
幸运咖发布了新的文献求助30
7秒前
朝朝暮夕完成签到 ,获得积分10
7秒前
OK完成签到,获得积分10
8秒前
8秒前
violet完成签到,获得积分10
9秒前
9秒前
淡然安雁发布了新的文献求助10
9秒前
anna1992完成签到,获得积分10
9秒前
9秒前
很多奶油完成签到 ,获得积分10
10秒前
板凳完成签到 ,获得积分10
11秒前
11秒前
xixixii发布了新的文献求助10
12秒前
wyz发布了新的文献求助10
12秒前
12秒前
12秒前
典雅采珊完成签到,获得积分10
12秒前
丘比特应助科研狗采纳,获得10
13秒前
隆中对发布了新的文献求助30
14秒前
古风欧完成签到,获得积分10
15秒前
等待黎明发布了新的文献求助10
15秒前
ding应助malistm采纳,获得30
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420180
求助须知:如何正确求助?哪些是违规求助? 4535297
关于积分的说明 14149461
捐赠科研通 4452280
什么是DOI,文献DOI怎么找? 2442103
邀请新用户注册赠送积分活动 1433615
关于科研通互助平台的介绍 1410869