Non-intrusive load monitoring by using active and reactive power in additive Factorial Hidden Markov Models

隐马尔可夫模型 二元分析 最大后验估计 交流电源 计算机科学 功率(物理) 度量(数据仓库) 阶乘 算法 数学 数学优化 人工智能 机器学习 数据挖掘 统计 最大似然 量子力学 物理 数学分析
作者
Roberto Bonfigli,Emanuele Principi,Marco Fagiani,Marco Severini,Stefano Squartini,Francesco Piazza
出处
期刊:Applied Energy [Elsevier BV]
卷期号:208: 1590-1607 被引量:183
标识
DOI:10.1016/j.apenergy.2017.08.203
摘要

Non-intrusive load monitoring (NILM) is the task of determining the appliances individual contributions to the aggregate power consumption by using a set of electrical parameters measured at a single metering point. NILM allows to provide detailed consumption information to the users, that induces them to modify their habits towards a wiser use of the electrical energy. This paper proposes a NILM algorithm based on the joint use of active and reactive power in the Additive Factorial Hidden Markov Models framework. In particular, in the proposed approach, the appliance model is represented by a bivariate Hidden Markov Model whose emitted symbols are the joint active-reactive power signals. The disaggregation is performed by means of an alternative formulation of the Additive Factorial Approximate Maximum a Posteriori (AFAMAP) algorithm for dealing with the bivariate HMM models. The proposed solution has been compared to the original AFAMAP algorithm based on the active power only and to the seminal approach proposed by Hart (1992), based on finite state machine appliance models and which employs both the active and reactive power. Hart's algorithm has been improved for handling the occurrence of multiple solutions by means of a Maximum A Posteriori technique (MAP). The experiments have been conducted on the AMPds dataset in noised and denoised conditions and the performance evaluated by using the F1-Measure and the normalized disaggregation metrics. In terms of F1-Measure, the results showed that the proposed approach outperforms AFAMAP, Hart's algorithm, and Hart's with MAP respectively by +14.9%, +21.8%, and +2.5% in the 6 appliances denoised case study. In the 6 appliances noised case study, the relative performance improvement is +25.5%, +51.1%, and +6.7%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
元气糖完成签到,获得积分10
1秒前
SciGPT应助琢钰采纳,获得10
1秒前
聪慧芷巧发布了新的文献求助10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
ludong_0应助科研通管家采纳,获得10
2秒前
oh应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
DijiaXu应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
3秒前
大力的老虎完成签到,获得积分10
3秒前
fff完成签到 ,获得积分10
4秒前
杨洋完成签到,获得积分10
4秒前
Tracy.完成签到,获得积分10
4秒前
5秒前
lwj完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
皮皮团完成签到 ,获得积分10
6秒前
7秒前
舒心衣发布了新的文献求助10
7秒前
中海完成签到,获得积分10
7秒前
ludong_0完成签到,获得积分10
7秒前
kanglan完成签到,获得积分10
7秒前
健康富裕完成签到 ,获得积分10
8秒前
JingP完成签到,获得积分10
8秒前
任全强完成签到,获得积分10
9秒前
酷波er应助yyy采纳,获得10
9秒前
勤恳的仰完成签到,获得积分10
10秒前
淡淡从阳发布了新的文献求助20
10秒前
霍霍完成签到 ,获得积分10
11秒前
yana应助Pepsi采纳,获得30
11秒前
11秒前
haha完成签到,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015806
求助须知:如何正确求助?哪些是违规求助? 3555777
关于积分的说明 11318714
捐赠科研通 3288911
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027