Non-intrusive load monitoring by using active and reactive power in additive Factorial Hidden Markov Models

隐马尔可夫模型 二元分析 最大后验估计 交流电源 计算机科学 功率(物理) 度量(数据仓库) 阶乘 算法 数学 数学优化 人工智能 机器学习 数据挖掘 统计 最大似然 数学分析 物理 量子力学
作者
Roberto Bonfigli,Emanuele Principi,Marco Fagiani,Marco Severini,Stefano Squartini,Francesco Piazza
出处
期刊:Applied Energy [Elsevier]
卷期号:208: 1590-1607 被引量:183
标识
DOI:10.1016/j.apenergy.2017.08.203
摘要

Non-intrusive load monitoring (NILM) is the task of determining the appliances individual contributions to the aggregate power consumption by using a set of electrical parameters measured at a single metering point. NILM allows to provide detailed consumption information to the users, that induces them to modify their habits towards a wiser use of the electrical energy. This paper proposes a NILM algorithm based on the joint use of active and reactive power in the Additive Factorial Hidden Markov Models framework. In particular, in the proposed approach, the appliance model is represented by a bivariate Hidden Markov Model whose emitted symbols are the joint active-reactive power signals. The disaggregation is performed by means of an alternative formulation of the Additive Factorial Approximate Maximum a Posteriori (AFAMAP) algorithm for dealing with the bivariate HMM models. The proposed solution has been compared to the original AFAMAP algorithm based on the active power only and to the seminal approach proposed by Hart (1992), based on finite state machine appliance models and which employs both the active and reactive power. Hart's algorithm has been improved for handling the occurrence of multiple solutions by means of a Maximum A Posteriori technique (MAP). The experiments have been conducted on the AMPds dataset in noised and denoised conditions and the performance evaluated by using the F1-Measure and the normalized disaggregation metrics. In terms of F1-Measure, the results showed that the proposed approach outperforms AFAMAP, Hart's algorithm, and Hart's with MAP respectively by +14.9%, +21.8%, and +2.5% in the 6 appliances denoised case study. In the 6 appliances noised case study, the relative performance improvement is +25.5%, +51.1%, and +6.7%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助Lyuxxxian采纳,获得10
刚刚
刚刚
小杜在此发布了新的文献求助10
刚刚
忧伤的大壮完成签到,获得积分10
刚刚
科研通AI6应助美丽大肚腩采纳,获得10
刚刚
埋头赶路应助舒适的采波采纳,获得10
刚刚
饕餮完成签到,获得积分10
1秒前
2秒前
浮游应助辛勤的惊蛰采纳,获得10
2秒前
科研通AI6应助DUN采纳,获得30
2秒前
12完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
生煎包大侠完成签到 ,获得积分10
4秒前
zzkkl发布了新的文献求助10
4秒前
乔青完成签到,获得积分10
4秒前
算命先生完成签到,获得积分10
5秒前
5秒前
6秒前
Daybreak发布了新的文献求助10
6秒前
6秒前
gongyh完成签到,获得积分10
7秒前
BowieHuang应助badada采纳,获得10
8秒前
8秒前
9秒前
9秒前
wbj完成签到,获得积分10
9秒前
周小凡发布了新的文献求助20
10秒前
高硕发布了新的文献求助10
10秒前
上官若男应助嗯嗯采纳,获得10
10秒前
李爱国应助PhD_Essence采纳,获得10
11秒前
kxm发布了新的文献求助10
11秒前
momo完成签到,获得积分10
11秒前
略微妙蛙发布了新的文献求助10
12秒前
12秒前
科研通AI6应助qian03采纳,获得10
12秒前
12秒前
hhhhh发布了新的文献求助10
13秒前
13秒前
奚康发布了新的文献求助10
14秒前
一个西藏发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660573
求助须知:如何正确求助?哪些是违规求助? 4834676
关于积分的说明 15091117
捐赠科研通 4819141
什么是DOI,文献DOI怎么找? 2579102
邀请新用户注册赠送积分活动 1533630
关于科研通互助平台的介绍 1492396