吸附
表面张力
离子键合
电动现象
化学物理
偶极子
化学
离子
分子动力学
表面电荷
物理化学
计算化学
热力学
有机化学
物理
作者
Shavkat Mamatkulov,Christoph Allolio,Roland R. Netz,Douwe Jan Bonthuis
标识
DOI:10.1002/anie.201707391
摘要
Abstract The surface tension of the air—water interface increases upon addition of inorganic salts, implying a negative surface excess of ionic species. Most acids, however, induce a decrease in surface tension, indicating a positive surface excess of hydrated protons. In combination with the apparent negative charge at pure air–water interfaces derived from electrokinetic experiments, this experimental observation has been a source of intense debate since the mid‐19th century. Herein, we calculate surface tensions and ionic surface propensities at air–water interfaces from classical, thermodynamically consistent molecular dynamics simulations. The surface tensions of NaOH, HCl, and NaCl solutions show outstanding quantitative agreement with experiment. Of the studied ions, only H 3 O + adsorbs to the air–water interface. The adsorption is explained by the deep potential well caused by the orientation of the H 3 O + dipole in the interfacial electric field, which is confirmed by ab initio simulations.
科研通智能强力驱动
Strongly Powered by AbleSci AI