浪涌
空气动力学
计算流体力学
涡轮机
海洋工程
机舱
涡流
旋涡脱落
机械
航空航天工程
涡轮叶片
螺旋桨
工程类
湍流
物理
气象学
雷诺数
作者
Thanh Toan Tran,Dong-Hyun Kim
标识
DOI:10.1016/j.renene.2015.12.013
摘要
To improve knowledge of the unsteady aerodynamic characteristics and interference effects of a floating offshore wind turbine (FOWT), this article focuses on the platform surge motion of a full configuration wind turbine with the rotating blades, hub, nacelle, and tower shapes. Unsteady aerodynamic analyses considering the moving motion of an entire configuration wind turbine have been conducted using an advanced computational fluid dynamics (CFD) and a conventional blade element momentum (BEM) analyses. The present CFD simulation is based on an advanced overset moving grid method to accurately consider the local and global motion of a three-dimensional wind turbine. The effects of various oscillation frequencies and amplitudes of the platform surge motion have been widely investigated herein. Three-dimensional unsteady flow fields around the moving wind turbine with rotating blades are graphically presented in detail. Complex flow interactions among blade tip vortices, tower shedding vortices, and turbulent wakes are physically observed. Comparisons of different aerodynamic analyses under the periodic surge motions are summarized to show the potential distinction among applied numerical methods. The present result indicates that the unsteady aerodynamic thrust and power tend to vary considerably depending on the oscillation frequency and amplitude of the surge motion.
科研通智能强力驱动
Strongly Powered by AbleSci AI