Layer Number Dependence of Li+ Intercalation on Few-Layer Graphene and Electrochemical Imaging of Its Solid–Electrolyte Interphase Evolution

石墨烯 插层(化学) 材料科学 电解质 图层(电子) 电化学 电极 纳米技术 相间 化学工程 无机化学 化学 物理化学 遗传学 生物 工程类
作者
Jingshu Hui,Mark Burgess,Jiarui Zhang,Joaquín Rodríguez‐López
出处
期刊:ACS Nano [American Chemical Society]
卷期号:10 (4): 4248-4257 被引量:95
标识
DOI:10.1021/acsnano.5b07692
摘要

A fundamental question facing electrodes made out of few layers of graphene (FLG) is if they display chemical properties that are different to their bulk graphite counterpart. Here, we show evidence that suggests that lithium ion intercalation on FLG, as measured via stationary voltammetry, shows a strong dependence on the number of layers of graphene that compose the electrode. Despite its extreme thinness and turbostratic structure, Li ion intercalation into FLG still proceeds through a staging process, albeit with different signatures than bulk graphite or multilayer graphene. Single-layer graphene does not show any evidence of ion intercalation, while FLG with four graphene layers displays limited staging peaks, which broaden and increase in number as the layer number increases to six. Despite these mechanistic differences on ion intercalation, the formation of a solid-electrolyte interphase (SEI) was observed on all electrodes. Scanning electrochemical microscopy (SECM) in the feedback mode was used to demonstrate changes in the surface conductivity of FLG during SEI evolution. Observation of ion intercalation on large area FLG was conditioned to the fabrication of "ionic channels" on the electrode. SECM measurements using a recently developed Li-ion sensitive imaging technique evidenced the role of these channels in enabling Li-ion intercalation through localized flux measurements. This work highlights the impact of nanostructure and microstructure on macroscopic electrochemical behavior and provides guidance to the mechanistic control of ion intercalation using graphene, an atomically thin interface where surface and bulk reactivity converge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现代的凡之完成签到,获得积分10
刚刚
刚刚
MOD完成签到,获得积分10
1秒前
2秒前
今后应助令和采纳,获得30
2秒前
知止发布了新的文献求助10
2秒前
2秒前
2秒前
fable完成签到,获得积分10
2秒前
领导范儿应助张文杰采纳,获得10
2秒前
3秒前
Hello应助无风风采纳,获得10
4秒前
浮游应助lu2025采纳,获得10
5秒前
zz关闭了zz文献求助
5秒前
yuanshl1985发布了新的文献求助10
5秒前
5秒前
5秒前
冰阔罗发布了新的文献求助10
7秒前
Sherlly发布了新的文献求助10
7秒前
贺光萌发布了新的文献求助10
8秒前
8秒前
宇文一发布了新的文献求助10
8秒前
9秒前
sss完成签到 ,获得积分10
9秒前
勤恳寒安发布了新的文献求助10
9秒前
123应助ok采纳,获得10
9秒前
chenlike完成签到,获得积分10
10秒前
Hello应助研友_48y70n采纳,获得10
11秒前
Alberta完成签到,获得积分10
11秒前
11秒前
大模型应助坦率的谷雪采纳,获得10
11秒前
12秒前
芋泥面包发布了新的文献求助10
12秒前
12秒前
852应助dichloro采纳,获得10
13秒前
13秒前
13秒前
13秒前
cocopan发布了新的文献求助10
14秒前
友好凡霜完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641911
求助须知:如何正确求助?哪些是违规求助? 4757635
关于积分的说明 15015486
捐赠科研通 4800390
什么是DOI,文献DOI怎么找? 2566016
邀请新用户注册赠送积分活动 1524164
关于科研通互助平台的介绍 1483790