Layer Number Dependence of Li+ Intercalation on Few-Layer Graphene and Electrochemical Imaging of Its Solid–Electrolyte Interphase Evolution

石墨烯 插层(化学) 材料科学 电解质 图层(电子) 电化学 电极 纳米技术 相间 化学工程 无机化学 化学 物理化学 遗传学 生物 工程类
作者
Jingshu Hui,Mark Burgess,Jiarui Zhang,Joaquín Rodríguez‐López
出处
期刊:ACS Nano [American Chemical Society]
卷期号:10 (4): 4248-4257 被引量:95
标识
DOI:10.1021/acsnano.5b07692
摘要

A fundamental question facing electrodes made out of few layers of graphene (FLG) is if they display chemical properties that are different to their bulk graphite counterpart. Here, we show evidence that suggests that lithium ion intercalation on FLG, as measured via stationary voltammetry, shows a strong dependence on the number of layers of graphene that compose the electrode. Despite its extreme thinness and turbostratic structure, Li ion intercalation into FLG still proceeds through a staging process, albeit with different signatures than bulk graphite or multilayer graphene. Single-layer graphene does not show any evidence of ion intercalation, while FLG with four graphene layers displays limited staging peaks, which broaden and increase in number as the layer number increases to six. Despite these mechanistic differences on ion intercalation, the formation of a solid-electrolyte interphase (SEI) was observed on all electrodes. Scanning electrochemical microscopy (SECM) in the feedback mode was used to demonstrate changes in the surface conductivity of FLG during SEI evolution. Observation of ion intercalation on large area FLG was conditioned to the fabrication of "ionic channels" on the electrode. SECM measurements using a recently developed Li-ion sensitive imaging technique evidenced the role of these channels in enabling Li-ion intercalation through localized flux measurements. This work highlights the impact of nanostructure and microstructure on macroscopic electrochemical behavior and provides guidance to the mechanistic control of ion intercalation using graphene, an atomically thin interface where surface and bulk reactivity converge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木子完成签到,获得积分10
刚刚
小房子完成签到,获得积分10
2秒前
Nolan完成签到,获得积分10
2秒前
贪玩板栗发布了新的文献求助10
2秒前
4秒前
5秒前
甜甜的平蓝完成签到,获得积分10
6秒前
7秒前
7秒前
潇洒飞丹完成签到,获得积分10
8秒前
10秒前
11秒前
11秒前
Baywreath完成签到,获得积分10
12秒前
竹筏过海应助Lei采纳,获得30
12秒前
马皓发布了新的文献求助10
12秒前
13秒前
田字格发布了新的文献求助10
14秒前
北极星发布了新的文献求助10
15秒前
16秒前
南原给南原的求助进行了留言
16秒前
17秒前
Wenjian7761完成签到,获得积分10
17秒前
缪缪发布了新的文献求助10
19秒前
老实的石头完成签到,获得积分10
19秒前
小吴同学发布了新的文献求助10
20秒前
20秒前
量子星尘发布了新的文献求助10
22秒前
腼腆的若雁完成签到,获得积分10
23秒前
23秒前
fuiee发布了新的文献求助10
23秒前
小开心完成签到,获得积分10
23秒前
北极星完成签到,获得积分10
24秒前
cccc完成签到 ,获得积分10
24秒前
25秒前
Dogged完成签到 ,获得积分10
26秒前
耶啵耶啵完成签到 ,获得积分10
27秒前
mentality完成签到,获得积分10
27秒前
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714