Layer Number Dependence of Li+ Intercalation on Few-Layer Graphene and Electrochemical Imaging of Its Solid–Electrolyte Interphase Evolution

石墨烯 插层(化学) 材料科学 电解质 图层(电子) 电化学 电极 纳米技术 相间 化学工程 无机化学 化学 物理化学 遗传学 生物 工程类
作者
Jingshu Hui,Mark Burgess,Jiarui Zhang,Joaquín Rodríguez‐López
出处
期刊:ACS Nano [American Chemical Society]
卷期号:10 (4): 4248-4257 被引量:95
标识
DOI:10.1021/acsnano.5b07692
摘要

A fundamental question facing electrodes made out of few layers of graphene (FLG) is if they display chemical properties that are different to their bulk graphite counterpart. Here, we show evidence that suggests that lithium ion intercalation on FLG, as measured via stationary voltammetry, shows a strong dependence on the number of layers of graphene that compose the electrode. Despite its extreme thinness and turbostratic structure, Li ion intercalation into FLG still proceeds through a staging process, albeit with different signatures than bulk graphite or multilayer graphene. Single-layer graphene does not show any evidence of ion intercalation, while FLG with four graphene layers displays limited staging peaks, which broaden and increase in number as the layer number increases to six. Despite these mechanistic differences on ion intercalation, the formation of a solid-electrolyte interphase (SEI) was observed on all electrodes. Scanning electrochemical microscopy (SECM) in the feedback mode was used to demonstrate changes in the surface conductivity of FLG during SEI evolution. Observation of ion intercalation on large area FLG was conditioned to the fabrication of "ionic channels" on the electrode. SECM measurements using a recently developed Li-ion sensitive imaging technique evidenced the role of these channels in enabling Li-ion intercalation through localized flux measurements. This work highlights the impact of nanostructure and microstructure on macroscopic electrochemical behavior and provides guidance to the mechanistic control of ion intercalation using graphene, an atomically thin interface where surface and bulk reactivity converge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
脑洞疼应助lang采纳,获得10
刚刚
汉堡包应助HjY采纳,获得10
刚刚
刚刚
yann发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
陈均涛完成签到,获得积分20
1秒前
初雪应助玛卡巴卡采纳,获得10
2秒前
初雪应助玛卡巴卡采纳,获得10
2秒前
2秒前
初雪应助玛卡巴卡采纳,获得10
2秒前
初雪应助玛卡巴卡采纳,获得10
2秒前
初雪应助玛卡巴卡采纳,获得10
2秒前
初雪应助玛卡巴卡采纳,获得10
2秒前
初雪应助玛卡巴卡采纳,获得10
2秒前
初雪应助玛卡巴卡采纳,获得10
2秒前
2秒前
3秒前
3秒前
太叔丹翠完成签到 ,获得积分0
3秒前
Betty发布了新的文献求助30
3秒前
ma121发布了新的文献求助30
3秒前
无聊的黎发布了新的文献求助10
3秒前
4秒前
Mark应助fanqiaqia采纳,获得10
4秒前
小蘑菇应助chx123采纳,获得10
4秒前
4秒前
南曦完成签到,获得积分10
4秒前
科研通AI6.1应助飞鸿影下采纳,获得30
5秒前
NeoWu发布了新的文献求助10
5秒前
昏睡的蟠桃应助姚老表采纳,获得100
5秒前
5秒前
叶伟帮发布了新的文献求助10
6秒前
6秒前
孔大漂亮发布了新的文献求助10
6秒前
汉堡包应助qian采纳,获得10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5768867
求助须知:如何正确求助?哪些是违规求助? 5577225
关于积分的说明 15419796
捐赠科研通 4902658
什么是DOI,文献DOI怎么找? 2637844
邀请新用户注册赠送积分活动 1585759
关于科研通互助平台的介绍 1540922