超级电容器
材料科学
电容
纳米片
电极
石墨烯
纳米技术
纤维
光电子学
功率密度
复合材料
功率(物理)
化学
物理化学
物理
量子力学
作者
Neng Yu,Hong Yin,Wei Zhang,Yuan Liu,Zhiyong Tang,Ming‐Qiang Zhu
标识
DOI:10.1002/aenm.201501458
摘要
Flexible fiber‐shaped supercapacitors have shown great potential in portable and wearable electronics. However, small specific capacitance and low operating voltage limit the practical application of fiber‐shaped supercapacitors in high energy density devices. Herein, direct growth of ultrathin MnO 2 nanosheet arrays on conductive carbon fibers with robust adhesion is exhibited, which exhibit a high specific capacitance of 634.5 F g −1 at a current density of 2.5 A g −1 and possess superior cycle stability. When MnO 2 nanosheet arrays on carbon fibers and graphene on carbon fibers are used as a positive electrode and a negative electrode, respectively, in an all‐solid‐state asymmetric supercapacitor (ASC), the ASC displays a high specific capacitance of 87.1 F g −1 and an exceptional energy density of 27.2 Wh kg −1 . In addition, its capacitance retention reaches 95.2% over 3000 cycles, representing the excellent cyclic ability. The flexibility and mechanical stability of these ASCs are highlighted by the negligible degradation of their electrochemical performance even under severely bending states. Impressively, as‐prepared fiber‐shaped ASCs could successfully power a photodetector based on CdS nanowires without applying any external bias voltage. The excellent performance of all‐solid‐state ASCs opens up new opportunity for development of wearable and self‐powered nanodevices in near future.
科研通智能强力驱动
Strongly Powered by AbleSci AI