We report on the development of a high-power, high-repetition-rate, fiber laser based source of ultrafast ultraviolet (UV) radiation. Using single-pass second-harmonic generation and subsequent sum-frequency generation (SFG) of an ultrafast ytterbium fiber at 1064 nm in 1.2 and 5 mm long bismuth triborate (BIBO) crystals, respectively, we have generated UV output power as high as 1.06 W at 355 nm with single-pass near-infrared-to-UV conversion efficiency of ∼22%. The source has output pulses of temporal and spectral widths of ∼576 fs and 1.6 nm, respectively, at 78 MHz repetition rate. For given crystals and laser parameters, we have experimentally verified that the optimum conversion efficiency of the SFG process requires interacting pump beams to have the same confocal parameters. We also present a systematic study on the power ratio of pump beams influencing the overall conversion of the UV radiation. The UV source has a peak-to-peak short-term power fluctuation of <2.2%, with a power drift of 0.76%/h associated to different loss mechanisms of the BIBO crystal at UV wavelengths. At tight focusing, the BIBO crystal has a broad angular acceptance bandwidth of (∼2 mrad·cm) for SFG of the femtosecond laser.