Experimental investigation on the mechanical properties of methane hydrate-bearing sand formed with rounded particles

甲烷 水合物 凝聚力(化学) 复合材料 材料科学 剪切(物理) 岩土工程 剪切(地质) 矿物学 地质学 化学 有机化学
作者
Shintaro Kajiyama,Yang Wu,Masayuki Hyodo,Yukio Nakata,Koji Nakashima,Norimasa Yoshimoto
出处
期刊:Journal of Natural Gas Science and Engineering [Elsevier]
卷期号:45: 96-107 被引量:93
标识
DOI:10.1016/j.jngse.2017.05.008
摘要

A series of triaxial compression tests were performed on the methane hydrate-bearing sands formed with rounded glass beads and natural sands to examine their mechanical properties. The effect of particle characteristics on the mechanical response of methane hydrate-bearing sands with regard to the exertion of bonding force and de-bond mechanism between grains is explained from the grain-scale viewpoint. In comparison with the natural sand, methane hydrate-bearing glass beads owns a similar initial stiffness and rapidly attains the peak shear strength at a smaller axial strain. The obvious post-peak strain-softening behaviour of methane hydrate-bearing glass beads which differs from the tender post-peak strain-softening tendency of methane hydrate-bearing natural sand is observed. It is attributed to almost simultaneous exfoliation of hydrate mass from the glass beads with smooth surface within the straightly sheared layers. The substantial resource of shear strength enhancement for methane hydrate-bearing glass beads is the cohesion but the shear strength of methane hydrate-bearing natural sand was jointly governed by the cohesion and angle of internal friction. In contrast to the increasing tendency of difference of shear strength with the level of effective confining pressure for methane hydrate-bearing natural sand, the methane hydrate-bearing glass beads exerts a stronger effect of bonding force on the difference of shear strength at relatively lower pressures but this effect decreases at higher pressures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菠菜菜str完成签到,获得积分10
1秒前
悟空发布了新的文献求助10
1秒前
优雅山柏发布了新的文献求助10
1秒前
1秒前
junc发布了新的文献求助20
1秒前
memory发布了新的文献求助10
1秒前
罗曼长情雪兰完成签到,获得积分10
2秒前
酷炫板凳发布了新的文献求助10
2秒前
Sue发布了新的文献求助10
2秒前
3秒前
张先森完成签到,获得积分10
3秒前
Orange应助饭小心采纳,获得10
3秒前
jason完成签到,获得积分10
3秒前
3秒前
3秒前
糖糖完成签到,获得积分10
4秒前
小二郎应助幸福胡萝卜采纳,获得10
4秒前
4秒前
亵渎完成签到,获得积分10
4秒前
mc1220完成签到,获得积分10
5秒前
5秒前
冰刀完成签到,获得积分10
6秒前
kid1412完成签到 ,获得积分10
7秒前
LU完成签到,获得积分10
7秒前
小蘑菇应助R先生采纳,获得50
7秒前
7秒前
小嘎完成签到 ,获得积分10
8秒前
8秒前
8秒前
小虎发布了新的文献求助30
8秒前
9秒前
superworm1完成签到,获得积分10
9秒前
不懂事的小孩完成签到,获得积分10
9秒前
张瑶完成签到,获得积分10
9秒前
chloe完成签到 ,获得积分10
9秒前
桐桐应助申小萌采纳,获得10
10秒前
星星泡饭完成签到,获得积分10
10秒前
健忘曼云完成签到,获得积分10
10秒前
晶晶妹妹发布了新的文献求助10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762