Dermatologist-level classification of skin cancer with deep neural networks

卷积神经网络 皮肤癌 人工智能 深度学习 计算机科学 活检 深层神经网络 皮肤活检 皮肤病科 模式识别(心理学) 医学 癌症 病理 内科学
作者
Andre Esteva,Brett Kuprel,Roberto A. Novoa,Justin Ko,Susan M. Swetter,Helen M. Blau,Sebastian Thrun
出处
期刊:Nature [Nature Portfolio]
卷期号:542 (7639): 115-118 被引量:10910
标识
DOI:10.1038/nature21056
摘要

An artificial intelligence trained to classify images of skin lesions as benign lesions or malignant skin cancers achieves the accuracy of board-certified dermatologists. Andre Esteva et al. used 129,450 clinical images of skin disease to train a deep convolutional neural network to classify skin lesions. The result is an algorithm that can classify lesions from photographic images similar to those taken with a mobile phone. The accuracy of the system in detecting malignant melanomas and carcinomas matched that of trained dermatologists. The authors suggest that the technique could be used outside the clinic as a visual screen for cancer. Skin cancer, the most common human malignancy1,2,3, is primarily diagnosed visually, beginning with an initial clinical screening and followed potentially by dermoscopic analysis, a biopsy and histopathological examination. Automated classification of skin lesions using images is a challenging task owing to the fine-grained variability in the appearance of skin lesions. Deep convolutional neural networks (CNNs)4,5 show potential for general and highly variable tasks across many fine-grained object categories6,7,8,9,10,11. Here we demonstrate classification of skin lesions using a single CNN, trained end-to-end from images directly, using only pixels and disease labels as inputs. We train a CNN using a dataset of 129,450 clinical images—two orders of magnitude larger than previous datasets12—consisting of 2,032 different diseases. We test its performance against 21 board-certified dermatologists on biopsy-proven clinical images with two critical binary classification use cases: keratinocyte carcinomas versus benign seborrheic keratoses; and malignant melanomas versus benign nevi. The first case represents the identification of the most common cancers, the second represents the identification of the deadliest skin cancer. The CNN achieves performance on par with all tested experts across both tasks, demonstrating an artificial intelligence capable of classifying skin cancer with a level of competence comparable to dermatologists. Outfitted with deep neural networks, mobile devices can potentially extend the reach of dermatologists outside of the clinic. It is projected that 6.3 billion smartphone subscriptions will exist by the year 2021 (ref. 13) and can therefore potentially provide low-cost universal access to vital diagnostic care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
停云发布了新的文献求助10
刚刚
DAN_完成签到,获得积分10
1秒前
1秒前
peiyy完成签到,获得积分10
2秒前
思源应助milv5采纳,获得10
3秒前
有思想发布了新的文献求助10
3秒前
3秒前
zss发布了新的文献求助10
4秒前
天天快乐应助Amadeus采纳,获得10
4秒前
wangjw32发布了新的文献求助10
4秒前
Flora发布了新的文献求助10
4秒前
5秒前
eeeee发布了新的文献求助10
6秒前
酷波er应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得50
7秒前
zhangyidian应助科研通管家采纳,获得30
7秒前
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
7秒前
李健应助科研通管家采纳,获得10
7秒前
来了来了完成签到,获得积分10
8秒前
小罗黑的发布了新的文献求助10
8秒前
drizzling完成签到,获得积分10
10秒前
天真蓝天完成签到,获得积分20
10秒前
科研通AI2S应助tuanheqi采纳,获得20
10秒前
11秒前
DWD完成签到,获得积分10
11秒前
13秒前
ItachiSkuya应助虚幻的雪巧采纳,获得30
15秒前
milv5发布了新的文献求助10
15秒前
whj发布了新的文献求助10
15秒前
有思想完成签到,获得积分10
16秒前
19秒前
李爱国应助xiuxiu采纳,获得10
19秒前
Amadeus发布了新的文献求助10
19秒前
20秒前
wanci应助瘦瘦的电线杆采纳,获得10
21秒前
无限达完成签到,获得积分10
21秒前
小张完成签到,获得积分10
21秒前
青ZZZZ完成签到 ,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Atmosphere-ice-ocean interactions in the Antarctic 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3679347
求助须知:如何正确求助?哪些是违规求助? 3232208
关于积分的说明 9802133
捐赠科研通 2943392
什么是DOI,文献DOI怎么找? 1613960
邀请新用户注册赠送积分活动 761977
科研通“疑难数据库(出版商)”最低求助积分说明 737149