Dermatologist-level classification of skin cancer with deep neural networks

卷积神经网络 皮肤癌 人工智能 深度学习 计算机科学 活检 深层神经网络 皮肤活检 皮肤病科 模式识别(心理学) 医学 癌症 病理 内科学
作者
Andre Esteva,Brett Kuprel,Roberto A. Novoa,Justin Ko,Susan M. Swetter,Helen M. Blau,Sebastian Thrun
出处
期刊:Nature [Springer Nature]
卷期号:542 (7639): 115-118 被引量:8950
标识
DOI:10.1038/nature21056
摘要

An artificial intelligence trained to classify images of skin lesions as benign lesions or malignant skin cancers achieves the accuracy of board-certified dermatologists. Andre Esteva et al. used 129,450 clinical images of skin disease to train a deep convolutional neural network to classify skin lesions. The result is an algorithm that can classify lesions from photographic images similar to those taken with a mobile phone. The accuracy of the system in detecting malignant melanomas and carcinomas matched that of trained dermatologists. The authors suggest that the technique could be used outside the clinic as a visual screen for cancer. Skin cancer, the most common human malignancy1,2,3, is primarily diagnosed visually, beginning with an initial clinical screening and followed potentially by dermoscopic analysis, a biopsy and histopathological examination. Automated classification of skin lesions using images is a challenging task owing to the fine-grained variability in the appearance of skin lesions. Deep convolutional neural networks (CNNs)4,5 show potential for general and highly variable tasks across many fine-grained object categories6,7,8,9,10,11. Here we demonstrate classification of skin lesions using a single CNN, trained end-to-end from images directly, using only pixels and disease labels as inputs. We train a CNN using a dataset of 129,450 clinical images—two orders of magnitude larger than previous datasets12—consisting of 2,032 different diseases. We test its performance against 21 board-certified dermatologists on biopsy-proven clinical images with two critical binary classification use cases: keratinocyte carcinomas versus benign seborrheic keratoses; and malignant melanomas versus benign nevi. The first case represents the identification of the most common cancers, the second represents the identification of the deadliest skin cancer. The CNN achieves performance on par with all tested experts across both tasks, demonstrating an artificial intelligence capable of classifying skin cancer with a level of competence comparable to dermatologists. Outfitted with deep neural networks, mobile devices can potentially extend the reach of dermatologists outside of the clinic. It is projected that 6.3 billion smartphone subscriptions will exist by the year 2021 (ref. 13) and can therefore potentially provide low-cost universal access to vital diagnostic care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Steven发布了新的文献求助10
刚刚
风秋杨完成签到 ,获得积分10
3秒前
ZZ完成签到,获得积分10
8秒前
zhilianghui0807完成签到 ,获得积分10
12秒前
终究是残念完成签到,获得积分10
23秒前
宇文宛菡完成签到 ,获得积分10
23秒前
Silver完成签到 ,获得积分10
29秒前
在水一方应助LouieHuang采纳,获得10
35秒前
花开四海完成签到 ,获得积分10
37秒前
lily完成签到,获得积分10
41秒前
Xii完成签到 ,获得积分10
54秒前
打打应助tly采纳,获得30
54秒前
58秒前
laoxie301发布了新的文献求助20
1分钟前
喜悦的鬼神完成签到 ,获得积分10
1分钟前
bjyx完成签到 ,获得积分10
1分钟前
小蘑菇应助科研通管家采纳,获得10
1分钟前
萧水白应助科研通管家采纳,获得10
1分钟前
105完成签到 ,获得积分10
1分钟前
奋斗的妙海完成签到 ,获得积分0
1分钟前
果酱完成签到,获得积分10
1分钟前
onevip完成签到,获得积分10
1分钟前
平静和满足完成签到 ,获得积分0
1分钟前
绿色心情完成签到 ,获得积分10
1分钟前
chenying完成签到 ,获得积分0
1分钟前
璇璇完成签到 ,获得积分10
2分钟前
杨永佳666完成签到 ,获得积分10
2分钟前
2分钟前
鹿222发布了新的文献求助20
2分钟前
超级的妙晴完成签到 ,获得积分10
2分钟前
Glory完成签到 ,获得积分10
2分钟前
leo完成签到,获得积分10
2分钟前
icewuwu完成签到,获得积分10
2分钟前
ytrewq完成签到 ,获得积分10
2分钟前
lamer完成签到,获得积分10
2分钟前
珂珂完成签到 ,获得积分10
2分钟前
行云流水完成签到,获得积分10
2分钟前
小马哥完成签到,获得积分10
2分钟前
bing完成签到 ,获得积分10
2分钟前
犹豫花卷完成签到 ,获得积分10
2分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244791
求助须知:如何正确求助?哪些是违规求助? 2888434
关于积分的说明 8252919
捐赠科研通 2556928
什么是DOI,文献DOI怎么找? 1385502
科研通“疑难数据库(出版商)”最低求助积分说明 650176
邀请新用户注册赠送积分活动 626303