Information-Theoretic Compressive Sensing Kernel Optimization and Bayesian Cramér–Rao Bound for Time Delay Estimation

压缩传感 计算机科学 算法 奈奎斯特率 克拉姆-饶行 核(代数) 数学 贝叶斯概率 雷达 估计理论 采样(信号处理) 人工智能 电信 计算机视觉 滤波器(信号处理) 组合数学
作者
Yujie Gu,Nathan A. Goodman
出处
期刊:IEEE Transactions on Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:65 (17): 4525-4537 被引量:75
标识
DOI:10.1109/tsp.2017.2706187
摘要

With the adoption of arbitrary and increasingly wideband signals, the design of modern radar systems continues to be limited by analog-to-digital converter technology and data throughput bottlenecks. Meanwhile, compressive sensing (CS) promises to reduce sampling rates below the Nyquist rate for some applications by constraining the set of possible signals. In many practical applications, detailed prior knowledge on the signals of interest can be learned from training data, existing track information, and/or other sources, which can be used to design better compressive measurement kernels. In this paper, we use an information-theoretic approach to optimize CS kernels for time delay estimation. The measurements are modeled via a Gaussian mixture model by discretizing the a priori probability distribution of the time delay. The optimal CS kernel that approximately maximizes the Shannon mutual information between the measurements and the time delay is then found by a gradient-based search. Furthermore, we also derive the Bayesian Cramér-Rao bound (CRB) for time delay estimation as a function of the CS kernel. In numerical simulations, we compare the performance of the proposed optimal sensing kernels to random projections and the Bayesian CRB. Simulation results demonstrate that the proposed technique for sensing kernel optimization can significantly improve performance, which is consistent with the Bayesian CRB versus signal-to-noise ratio (SNR). Finally, we use the Bayesian CRB expressions and simulation results to make conclusions about the usefulness of CS in radar applications. Specifically, we discuss CS SNR loss versus resolution improvement in SNR- and resolution-limited scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
初余发布了新的文献求助10
2秒前
小黄发布了新的文献求助10
3秒前
小蘑菇应助闫111采纳,获得10
6秒前
小燕子完成签到 ,获得积分10
8秒前
10秒前
13秒前
14秒前
14秒前
ZHI完成签到,获得积分20
15秒前
16秒前
16秒前
KD发布了新的文献求助10
19秒前
WRZ发布了新的文献求助10
20秒前
小马完成签到,获得积分10
20秒前
21秒前
NexusExplorer应助北执采纳,获得10
22秒前
John完成签到,获得积分10
22秒前
23秒前
共享精神应助盆浴烟采纳,获得10
24秒前
26秒前
闫111发布了新的文献求助10
27秒前
小马甲应助sun采纳,获得10
30秒前
ZHI发布了新的文献求助10
30秒前
手帕很忙完成签到,获得积分10
31秒前
闫111完成签到,获得积分20
33秒前
所所应助WRZ采纳,获得10
36秒前
8R60d8应助sks采纳,获得10
36秒前
36秒前
38秒前
sun发布了新的文献求助10
42秒前
zhanks发布了新的文献求助10
43秒前
jiejie完成签到,获得积分10
48秒前
sun完成签到,获得积分10
49秒前
52秒前
嚣张的豆豆完成签到,获得积分10
52秒前
繁荣的念双完成签到,获得积分10
53秒前
共享精神应助米九采纳,获得10
53秒前
小蘑菇应助小羊要加油采纳,获得10
54秒前
完美世界应助研友_LaV1xn采纳,获得10
55秒前
leijh123完成签到,获得积分20
56秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055401
求助须知:如何正确求助?哪些是违规求助? 2712227
关于积分的说明 7430195
捐赠科研通 2357037
什么是DOI,文献DOI怎么找? 1248528
科研通“疑难数据库(出版商)”最低求助积分说明 606737
版权声明 596093