亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Information-Theoretic Compressive Sensing Kernel Optimization and Bayesian Cramér–Rao Bound for Time Delay Estimation

压缩传感 计算机科学 算法 奈奎斯特率 克拉姆-饶行 核(代数) 数学 贝叶斯概率 雷达 估计理论 采样(信号处理) 人工智能 电信 计算机视觉 滤波器(信号处理) 组合数学
作者
Yujie Gu,Nathan A. Goodman
出处
期刊:IEEE Transactions on Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:65 (17): 4525-4537 被引量:75
标识
DOI:10.1109/tsp.2017.2706187
摘要

With the adoption of arbitrary and increasingly wideband signals, the design of modern radar systems continues to be limited by analog-to-digital converter technology and data throughput bottlenecks. Meanwhile, compressive sensing (CS) promises to reduce sampling rates below the Nyquist rate for some applications by constraining the set of possible signals. In many practical applications, detailed prior knowledge on the signals of interest can be learned from training data, existing track information, and/or other sources, which can be used to design better compressive measurement kernels. In this paper, we use an information-theoretic approach to optimize CS kernels for time delay estimation. The measurements are modeled via a Gaussian mixture model by discretizing the a priori probability distribution of the time delay. The optimal CS kernel that approximately maximizes the Shannon mutual information between the measurements and the time delay is then found by a gradient-based search. Furthermore, we also derive the Bayesian Cramér-Rao bound (CRB) for time delay estimation as a function of the CS kernel. In numerical simulations, we compare the performance of the proposed optimal sensing kernels to random projections and the Bayesian CRB. Simulation results demonstrate that the proposed technique for sensing kernel optimization can significantly improve performance, which is consistent with the Bayesian CRB versus signal-to-noise ratio (SNR). Finally, we use the Bayesian CRB expressions and simulation results to make conclusions about the usefulness of CS in radar applications. Specifically, we discuss CS SNR loss versus resolution improvement in SNR- and resolution-limited scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
9秒前
猪猪hero应助zc98采纳,获得10
21秒前
34秒前
勿惏发布了新的文献求助30
38秒前
所所应助nsc采纳,获得30
39秒前
50秒前
53秒前
scuter发布了新的文献求助10
54秒前
scuter完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
nsc发布了新的文献求助30
1分钟前
bbdd2334发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
小马甲应助nsc采纳,获得10
1分钟前
1分钟前
Rabbit发布了新的文献求助10
1分钟前
2分钟前
2分钟前
kaka完成签到,获得积分10
2分钟前
nsc发布了新的文献求助10
2分钟前
思源应助nsc采纳,获得10
2分钟前
酷波er应助Rabbit采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Rabbit完成签到,获得积分10
3分钟前
3分钟前
nsc发布了新的文献求助10
3分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
激动的似狮完成签到,获得积分10
4分钟前
4分钟前
ICE_MILK发布了新的文献求助10
4分钟前
郗妫完成签到,获得积分10
4分钟前
5分钟前
ICE_MILK完成签到,获得积分10
5分钟前
jarrykim完成签到,获得积分10
5分钟前
勿惏发布了新的文献求助10
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957040
求助须知:如何正确求助?哪些是违规求助? 3503067
关于积分的说明 11111230
捐赠科研通 3234096
什么是DOI,文献DOI怎么找? 1787725
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264