A Robot System for Pruning Grape Vines

修剪 葡萄园 弹道 藤蔓 人工智能 计算机视觉 机械臂 机器人 树(集合论) 计算机科学 特征(语言学) 数学 地理 生物 植物 天文 物理 数学分析 哲学 语言学 考古 农学
作者
Tom Botterill,Scott Paulin,Richard D. Green,Samuel Williams,Jessica Lin,Valerie P. Saxton,Steven Mills,Xiaoqi Chen,Sam Corbett‐Davies
出处
期刊:Journal of Field Robotics [Wiley]
卷期号:34 (6): 1100-1122 被引量:180
标识
DOI:10.1002/rob.21680
摘要

This paper describes a robot system for the automatic pruning of grape vines. A mobile platform straddles the row of vines, and it images them with trinocular stereo cameras as it moves. A computer vision system builds a three‐dimensional (3D) model of the vines, an artificial intelligence (AI) system decides which canes to prune, and a six degree‐of‐freedom robot arm makes the required cuts. The system is demonstrated cutting vines in the vineyard. The main contributions of this paper are the computer vision system that builds 3D vine models, and the test of the complete‐integrated system. The vine models capture the structure of the plants so that the AI system can decide where to prune, and they are accurate enough that the robot arm can reach the required cuts. Vine models are reconstructed by matching features between images, triangulating feature matches to give a 3D model, then optimizing the model and the robot's trajectory jointly (incremental bundle adjustment). Trajectories are estimated online at 0.25 m/s, and they have errors below 1% when modeling a 96 m row of 59 vines. Pruning each vine requires the robot arm to cut an average of 8.4 canes. A collision‐free trajectory for the arm is planned in intervals of 1.5 s/vine with a rapidly exploring random tree motion planner. The total time to prune one vine is 2 min in field trials, which is similar to human pruners, and it could be greatly reduced with a faster arm. Trials also show that the long chain of interdependent components limits reliability. A commercially feasible pruning robot should stop and prune each vine in turn.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
3秒前
4秒前
MQL完成签到,获得积分10
4秒前
小垃圾发布了新的文献求助10
4秒前
5秒前
莫遥完成签到 ,获得积分10
5秒前
zkwgly完成签到,获得积分10
5秒前
鱼蛋关注了科研通微信公众号
7秒前
7秒前
Ran发布了新的文献求助10
8秒前
如意枫叶发布了新的文献求助10
8秒前
zkwgly发布了新的文献求助10
8秒前
张雯思发布了新的文献求助10
8秒前
小蛮样完成签到,获得积分10
9秒前
tg2024完成签到,获得积分10
9秒前
10秒前
10秒前
dicc发布了新的文献求助10
10秒前
玄月发布了新的文献求助10
10秒前
冯冯完成签到,获得积分10
10秒前
11秒前
12秒前
15秒前
15秒前
sxhdxwf发布了新的文献求助30
16秒前
16秒前
勤奋的从梦完成签到,获得积分10
18秒前
19秒前
ukmy完成签到,获得积分10
19秒前
20秒前
lh发布了新的文献求助10
20秒前
公冶笑白完成签到,获得积分10
21秒前
ukmy发布了新的文献求助10
21秒前
22秒前
带志完成签到,获得积分10
23秒前
24秒前
Hello应助wuniuniu采纳,获得10
25秒前
顾众生发布了新的文献求助10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989711
求助须知:如何正确求助?哪些是违规求助? 3531864
关于积分的说明 11255235
捐赠科研通 3270505
什么是DOI,文献DOI怎么找? 1804983
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809176