Degradable polyester/urea inclusion complex applied as a facile and environment-friendly strategy for slow-release fertilizer: Performance and mechanism

聚酯纤维 尿素 包膜尿素 肥料 材料科学 化学工程 溶剂 乙烯 控制释放 高分子化学 化学 催化作用 有机化学 复合材料 纳米技术 工程类
作者
Hai‐Mu Ye,Hongfang Li,Cai-Shui Wang,Jingxiang Yang,Guoyong Huang,Xiaoyu Meng,Qiong Zhou
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:381: 122704-122704 被引量:106
标识
DOI:10.1016/j.cej.2019.122704
摘要

Most manufacturing technologies of slow-release urea fertilizers are solvent-assisted and consequently complicated. Therefore, the development of a solvent-free and facile approach has been actively pursued. Herein, the inclusion complexes (ICs) of environmentally degradable polyester and urea prepared by one-step blending are developed as slow-release urea fertilizers for the first time. Three kinds of polyesters, poly(butylene succinate) (PBS), poly(ethylene succinate) (PES) and poly(propylene succinate) (PPS) are involved. Compared with neat urea, the IC fertilizers exhibit much lower and more adjustable release rates, which can decrease from tens to thousands of times by varying factors such as granular size, compactness and polyester species. Interestingly, the crystallizability of polyester is demonstrated to play an important role in controlling the slow-release performance, the weaker crystallizability of polyester chains results in the longer release time of IC fertilizer. Analysis of release profiles reveals that the urea component in IC fertilizers displays a second-order release process first and then a zero-order behavior at the late stage. Microstructure assay suggests that the insoluble polyester chains freed from urea frameworks crystallize and sheath the rest of IC upon contact with water. Consequently, a sophisticated release model of urea from IC fertilizer is proposed. The degradation of polyester component and the promotion effect of IC fertilizer on maize growth are also studied in the lab.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
khan发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
Lucas应助坦率易烟采纳,获得10
5秒前
6秒前
6秒前
6秒前
莉莉子完成签到,获得积分10
8秒前
yy发布了新的文献求助10
8秒前
9秒前
10秒前
糕糕发布了新的文献求助10
11秒前
莉莉子发布了新的文献求助10
11秒前
潟湖迟鱼完成签到,获得积分10
13秒前
14秒前
14秒前
CYJ完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
搜集达人应助爪人猫采纳,获得10
16秒前
16秒前
luchangan发布了新的文献求助10
16秒前
17秒前
17秒前
meiliminmin完成签到,获得积分10
17秒前
18秒前
CYJ发布了新的文献求助10
20秒前
rivertea发布了新的文献求助10
22秒前
西陆完成签到,获得积分10
22秒前
流草林完成签到,获得积分10
22秒前
Yc应助zzzcxxx采纳,获得10
22秒前
23秒前
nenoaowu发布了新的文献求助10
24秒前
27秒前
27秒前
麦克发布了新的文献求助10
27秒前
英俊的铭应助khan采纳,获得10
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Metal-Ligand Multiple Bonds: The Chemistry of Transition Metal Complexes Containing Oxo, Nitrido, Imido, Alkylidene, or Alkylidyne Ligands 1st Edition 1500
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3772804
求助须知:如何正确求助?哪些是违规求助? 3318365
关于积分的说明 10189864
捐赠科研通 3033119
什么是DOI,文献DOI怎么找? 1664148
邀请新用户注册赠送积分活动 796109
科研通“疑难数据库(出版商)”最低求助积分说明 757259